MiniGPT-4/test.py

150 lines
3.4 KiB
Python
Raw Normal View History

# from math import factorial
# def combine_number(n,k):
# combinations = factorial(n) / factorial(n - k)
# return combinations
# # 定义一个函数来计算给定字符串中平衡串的子序列数量
# def count_balanced_subsequences(s):
# MOD = 10**9 + 7
# # 初始化字母计数器
# count = [0] * 26
# for char in s:
# count[ord(char) - ord('a')] += 1
# result = 0
# while sum(count)>0:
# cnt = 0
# for i in range(26):
# if count[i] > 0:
# cnt += 1
# count[i] -= 1
# print(count)
# result += combine_number(cnt,2)
# print(result)
# return result
# # 示例输入
# n = 5
# s = "ababc"
# # 计算结果
# result = count_balanced_subsequences(s)
# print(result)
# def calculate_scores(k, x, y):
# # 根据题目描述,我们有以下等式:
# # a + b + c = k
# # c = a + x
# # c = b - y
# # 由上面两个等式可得a + x = b - y
# # 因此我们可以解这个线性方程组得到a, b, c的值
# # a + (a + x) + (a + x + y) = k
# # 3a + 2x + y = k
# # 解得:
# a = (k - 2*x - y) // 3
# c = a + x
# b = c + y
# return a, b, c
# # 示例输入
# k, x, y = 441, 1, -20
# # 计算输出
# a, b, c = calculate_scores(k, x, y)
# print(a, b, c)
# def min_operations_to_equal(s, t):
# operations = []
# i = len(s) - 1
# while i >= 0:
# if s[i] != t[i]:
# operations.append((1, i + 1, t[i]))
# s = t[i] * (i + 1) + s[i + 1:] # 更新s字符串为操作后的状态
# i -= 1
# return operations
# # 示例输入
# s = "aabc"
# t = "abcc"
# # 计算所需的最小操作次数及具体操作
# operations1 = min_operations_to_equal(s, t)
# operations2 = min_operations_to_equal(t, s)
# if len(operations1) < len(operations2):
# operations = operations1
# else:
# operations = operations2
# # 输出结果
# print(len(operations))
# for op in operations:
# print(*op)
# #include <iostream>
# #include <linux/limits,h>
# #include <string>
# using namespace std;
# struct node {
# char a, b;
# }ans[100100];
# char col[9] = {'','a','b'
# int main(){
# string x; cin >>x;
# char w=x[0],s=x[1];
# int ww=w-'a'+ 1;
# int ss =s -'0';
# int tot = 0;
# for(int i=1;i<=8; ++i){
# if(1 != ss){
# ans[++tot]=(node){w,(char)(i +'@')};
# }
# }
# for(int i=1; i <= 8; ++i){
# if(1 != ww){
# ans[++tot]=(node){colli], s};
# }
# }
# for(int i=1;i<8;++1){
# for(int j=1;j<=8; ++j){
# if(i+j==ww + ss){
# if(i !=ss |lj != ww){
# ans[++tot]=(node){col[j],(char)}
# }
# }
# }
# }
# for(int i=1;i<=8;++i){
# for(int j=1;j<=8; ++j){
# if(i-j=ss-ww){
# if(i !=ss ||j!= ww){
# ans[++tot]=(node)fcol[j](char)
# }
# }
# }
# }
# cout << tot.<< endl;
# for(int i =1; i <= tot; ++i) cout << ans[i].a <<
# return 0;
# #include <linux/limits.h>
# #include <string>using namespace stdj
# const int N= 1001008
# int n, a[N];
# int main(){
# cin >> n;
# int tot1 = 0, tot0 = 0;
# for(int i=1;i<= n; ++1){
# cin >> a[i];
# if(a[i]%2=0) tot0++;
# else tot1++;
# cout << abs(tot1-(n/2))<<endl;
# return 0;