2023-04-16 22:04:16 +00:00
|
|
|
import os
|
|
|
|
import logging
|
2023-04-17 13:57:20 +00:00
|
|
|
import warnings
|
2023-04-16 22:04:16 +00:00
|
|
|
|
|
|
|
from minigpt4.common.registry import registry
|
|
|
|
from minigpt4.datasets.builders.base_dataset_builder import BaseDatasetBuilder
|
|
|
|
from minigpt4.datasets.datasets.laion_dataset import LaionDataset
|
|
|
|
from minigpt4.datasets.datasets.cc_sbu_dataset import CCSBUDataset, CCSBUAlignDataset
|
2023-10-22 18:37:45 +00:00
|
|
|
from minigpt4.datasets.datasets.text_caps import TextCapDataset
|
|
|
|
from minigpt4.datasets.datasets.llava_dataset import LlavaDetailDataset, LlavaReasonDataset, LlavaConversationDataset
|
|
|
|
from minigpt4.datasets.datasets.unnatural_instruction import UnnaturalDataset
|
|
|
|
from minigpt4.datasets.datasets.multitask_conversation import MultiTaskConversationDataset
|
|
|
|
from minigpt4.datasets.datasets.flickr import GroundedDetailDataset,CaptionToObjectDataset,PhraseToObjectDataset
|
|
|
|
from minigpt4.datasets.datasets.vg_dataset import ReferVisualGenomeDataset
|
|
|
|
from minigpt4.datasets.datasets.coco_dataset import ReferCOCODataset, InvReferCOCODataset
|
|
|
|
from minigpt4.datasets.datasets.gqa_datasets import GQADataset
|
|
|
|
from minigpt4.datasets.datasets.aok_vqa_datasets import AOKVQADataset
|
|
|
|
from minigpt4.datasets.datasets.coco_vqa_datasets import COCOVQADataset
|
2023-10-23 04:05:27 +00:00
|
|
|
from minigpt4.datasets.datasets.ocrvqa_dataset import OCRVQADataset
|
|
|
|
from minigpt4.datasets.datasets.coco_caption import COCOCapDataset
|
2025-01-12 02:27:32 +00:00
|
|
|
from minigpt4.datasets.datasets.mvtec_dataset import MVTecDataset
|
2023-10-22 18:37:45 +00:00
|
|
|
|
|
|
|
@registry.register_builder("multitask_conversation")
|
|
|
|
class MultitaskConversationBuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = MultiTaskConversationDataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/multitask_conversation/default.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
def build_datasets(self):
|
|
|
|
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
|
|
|
logging.info("Building datasets...")
|
|
|
|
self.build_processors()
|
|
|
|
build_info = self.config.build_info
|
|
|
|
datasets = dict()
|
|
|
|
|
|
|
|
# create datasets
|
|
|
|
dataset_cls = self.train_dataset_cls
|
|
|
|
datasets['train'] = dataset_cls(
|
|
|
|
vis_processor=self.vis_processors["train"],
|
|
|
|
text_processor=self.text_processors["train"],
|
|
|
|
ann_path=build_info.ann_path,
|
|
|
|
vis_root=build_info.image_path,
|
|
|
|
)
|
|
|
|
|
|
|
|
return datasets
|
|
|
|
|
|
|
|
|
|
|
|
@registry.register_builder("unnatural_instruction")
|
|
|
|
class UnnaturalInstructionBuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = UnnaturalDataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/nlp/unnatural_instruction.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
def build_datasets(self):
|
|
|
|
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
|
|
|
logging.info("Building datasets...")
|
|
|
|
self.build_processors()
|
|
|
|
build_info = self.config.build_info
|
|
|
|
datasets = dict()
|
|
|
|
|
|
|
|
# create datasets
|
|
|
|
dataset_cls = self.train_dataset_cls
|
|
|
|
datasets['train'] = dataset_cls(
|
|
|
|
text_processor=self.text_processors["train"],
|
|
|
|
ann_path=build_info.ann_path,
|
|
|
|
)
|
|
|
|
|
|
|
|
return datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@registry.register_builder("llava_detail")
|
|
|
|
class LlavaDetailBuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = LlavaDetailDataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/llava/detail.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
def build_datasets(self):
|
|
|
|
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
|
|
|
logging.info("Building datasets...")
|
|
|
|
self.build_processors()
|
|
|
|
build_info = self.config.build_info
|
|
|
|
datasets = dict()
|
|
|
|
|
|
|
|
# create datasets
|
|
|
|
dataset_cls = self.train_dataset_cls
|
|
|
|
datasets['train'] = dataset_cls(
|
|
|
|
vis_processor=self.vis_processors["train"],
|
|
|
|
text_processor=self.text_processors["train"],
|
|
|
|
ann_path=build_info.ann_path,
|
|
|
|
vis_root=build_info.image_path,
|
|
|
|
)
|
|
|
|
|
|
|
|
return datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@registry.register_builder("llava_reason")
|
|
|
|
class LlavaReasonBuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = LlavaReasonDataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/llava/reason.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
def build_datasets(self):
|
|
|
|
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
|
|
|
logging.info("Building datasets...")
|
|
|
|
self.build_processors()
|
|
|
|
build_info = self.config.build_info
|
|
|
|
datasets = dict()
|
|
|
|
|
|
|
|
# create datasets
|
|
|
|
dataset_cls = self.train_dataset_cls
|
|
|
|
datasets['train'] = dataset_cls(
|
|
|
|
vis_processor=self.vis_processors["train"],
|
|
|
|
text_processor=self.text_processors["train"],
|
|
|
|
ann_path=build_info.ann_path,
|
|
|
|
vis_root=build_info.image_path,
|
|
|
|
)
|
|
|
|
|
|
|
|
return datasets
|
|
|
|
|
|
|
|
@registry.register_builder("llava_conversation")
|
|
|
|
class LlavaReasonBuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = LlavaConversationDataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/llava/conversation.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
def build_datasets(self):
|
|
|
|
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
|
|
|
logging.info("Building datasets...")
|
|
|
|
self.build_processors()
|
|
|
|
build_info = self.config.build_info
|
|
|
|
datasets = dict()
|
|
|
|
|
|
|
|
# create datasets
|
|
|
|
dataset_cls = self.train_dataset_cls
|
|
|
|
datasets['train'] = dataset_cls(
|
|
|
|
vis_processor=self.vis_processors["train"],
|
|
|
|
text_processor=self.text_processors["train"],
|
|
|
|
ann_path=build_info.ann_path,
|
|
|
|
vis_root=build_info.image_path,
|
|
|
|
)
|
|
|
|
|
|
|
|
return datasets
|
|
|
|
|
|
|
|
|
|
|
|
class AllRefCOCOBuilder(BaseDatasetBuilder):
|
|
|
|
|
|
|
|
def build_datasets(self):
|
|
|
|
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
|
|
|
logging.info("Building datasets...")
|
|
|
|
self.build_processors()
|
|
|
|
|
|
|
|
build_info = self.config.build_info
|
|
|
|
image_path = build_info.image_path
|
|
|
|
ann_path = build_info.ann_path
|
|
|
|
|
|
|
|
datasets = dict()
|
|
|
|
|
|
|
|
if not os.path.exists(image_path):
|
|
|
|
warnings.warn("image path {} does not exist.".format(image_path))
|
|
|
|
if not os.path.exists(ann_path):
|
|
|
|
warnings.warn("ann path {} does not exist.".format(ann_path))
|
|
|
|
|
|
|
|
# create datasets
|
|
|
|
dataset_cls = self.train_dataset_cls
|
|
|
|
datasets['train'] = dataset_cls(
|
|
|
|
vis_processor=self.vis_processors["train"],
|
|
|
|
text_processor=self.text_processors["train"],
|
|
|
|
ann_path=ann_path,
|
|
|
|
vis_root=image_path,
|
|
|
|
dataset=build_info.dataset,
|
|
|
|
splitBy=build_info.splitBy
|
|
|
|
)
|
|
|
|
|
|
|
|
return datasets
|
|
|
|
|
|
|
|
|
|
|
|
@registry.register_builder("refcoco")
|
|
|
|
class RefCOCOBuilder(AllRefCOCOBuilder):
|
|
|
|
train_dataset_cls = ReferCOCODataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/coco_bbox/refcoco.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
@registry.register_builder("refcocop")
|
|
|
|
class RefCOCOPBuilder(AllRefCOCOBuilder):
|
|
|
|
train_dataset_cls = ReferCOCODataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/coco_bbox/refcocop.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
@registry.register_builder("refcocog")
|
|
|
|
class RefCOCOGBuilder(AllRefCOCOBuilder):
|
|
|
|
train_dataset_cls = ReferCOCODataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/coco_bbox/refcocog.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
@registry.register_builder("invrefcoco")
|
|
|
|
class RefCOCOBuilder(AllRefCOCOBuilder):
|
|
|
|
train_dataset_cls = InvReferCOCODataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/coco_bbox/invrefcoco.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
@registry.register_builder("invrefcocop")
|
|
|
|
class RefCOCOPBuilder(AllRefCOCOBuilder):
|
|
|
|
train_dataset_cls = InvReferCOCODataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/coco_bbox/invrefcocop.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
@registry.register_builder("invrefcocog")
|
|
|
|
class RefCOCOGBuilder(AllRefCOCOBuilder):
|
|
|
|
train_dataset_cls = InvReferCOCODataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/coco_bbox/invrefcocog.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
@registry.register_builder("refvg")
|
|
|
|
class RefVisualGenomeBuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = ReferVisualGenomeDataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/vg/ref.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
def build_datasets(self):
|
|
|
|
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
|
|
|
logging.info("Building datasets...")
|
|
|
|
self.build_processors()
|
|
|
|
|
|
|
|
build_info = self.config.build_info
|
|
|
|
data_dir = build_info.data_dir
|
|
|
|
datasets = dict()
|
|
|
|
|
|
|
|
# create datasets
|
|
|
|
dataset_cls = self.train_dataset_cls
|
|
|
|
datasets['train'] = dataset_cls(
|
|
|
|
vis_processor=self.vis_processors["train"],
|
|
|
|
text_processor=self.text_processors["train"],
|
|
|
|
data_dir=data_dir,
|
|
|
|
)
|
|
|
|
|
|
|
|
return datasets
|
|
|
|
|
|
|
|
|
|
|
|
@registry.register_builder("textcaps_caption")
|
|
|
|
class TextcapCaptionBuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = TextCapDataset
|
|
|
|
|
|
|
|
DATASET_CONFIG_DICT = {"default": "configs/datasets/textcaps/caption.yaml"}
|
|
|
|
|
|
|
|
def _download_ann(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def _download_vis(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def build(self):
|
|
|
|
self.build_processors()
|
|
|
|
|
|
|
|
build_info = self.config.build_info
|
|
|
|
|
|
|
|
datasets = dict()
|
|
|
|
split = "train"
|
|
|
|
|
|
|
|
# create datasets
|
|
|
|
# [NOTE] return inner_datasets (wds.DataPipeline)
|
|
|
|
dataset_cls = self.train_dataset_cls
|
|
|
|
datasets[split] = dataset_cls(
|
|
|
|
vis_processor=self.vis_processors[split],
|
|
|
|
text_processor=self.text_processors[split],
|
|
|
|
ann_path=build_info.ann_path,
|
|
|
|
vis_root=build_info.image_path,
|
|
|
|
)
|
|
|
|
|
|
|
|
return datasets
|
|
|
|
|
|
|
|
@registry.register_builder("coco_vqa")
|
|
|
|
class COCOVQABuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = COCOVQADataset
|
|
|
|
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/coco/defaults_vqa.yaml",
|
|
|
|
}
|
|
|
|
|
2023-10-23 04:05:27 +00:00
|
|
|
@registry.register_builder("ok_vqa")
|
|
|
|
class OKVQABuilder(COCOVQABuilder):
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/okvqa/defaults.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2023-10-22 18:37:45 +00:00
|
|
|
@registry.register_builder("aok_vqa")
|
|
|
|
class AOKVQABuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = AOKVQADataset
|
|
|
|
|
|
|
|
DATASET_CONFIG_DICT = {"default": "configs/datasets/aokvqa/defaults.yaml"}
|
|
|
|
|
|
|
|
|
|
|
|
@registry.register_builder("gqa")
|
|
|
|
class GQABuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = GQADataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/gqa/balanced_val.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2023-10-23 04:05:27 +00:00
|
|
|
@registry.register_builder("flickr_grounded_caption")
|
2023-10-22 18:37:45 +00:00
|
|
|
class GroundedCaptionBuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = GroundedDetailDataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/flickr/default.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
def build_datasets(self):
|
|
|
|
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
|
|
|
logging.info("Building datasets...")
|
|
|
|
self.build_processors()
|
|
|
|
build_info = self.config.build_info
|
|
|
|
datasets = dict()
|
|
|
|
|
|
|
|
# create datasets
|
|
|
|
dataset_cls = self.train_dataset_cls
|
|
|
|
datasets['train'] = dataset_cls(
|
|
|
|
vis_processor=self.vis_processors["train"],
|
|
|
|
text_processor=self.text_processors["train"],
|
|
|
|
ann_path=build_info.ann_path,
|
|
|
|
vis_root=build_info.image_path,
|
|
|
|
)
|
|
|
|
|
|
|
|
return datasets
|
|
|
|
|
|
|
|
|
2023-10-23 04:05:27 +00:00
|
|
|
@registry.register_builder("flickr_CaptionToPhrase")
|
2023-10-22 18:37:45 +00:00
|
|
|
class CaptionToPhraseBuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = CaptionToObjectDataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/flickr/caption_to_phrase.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
def build_datasets(self):
|
|
|
|
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
|
|
|
logging.info("Building datasets...")
|
|
|
|
self.build_processors()
|
|
|
|
build_info = self.config.build_info
|
|
|
|
datasets = dict()
|
|
|
|
|
|
|
|
# create datasets
|
|
|
|
dataset_cls = self.train_dataset_cls
|
|
|
|
datasets['train'] = dataset_cls(
|
|
|
|
vis_processor=self.vis_processors["train"],
|
|
|
|
text_processor=self.text_processors["train"],
|
|
|
|
ann_path=build_info.ann_path,
|
|
|
|
vis_root=build_info.image_path,
|
|
|
|
)
|
|
|
|
|
|
|
|
return datasets
|
|
|
|
|
2023-10-23 04:05:27 +00:00
|
|
|
@registry.register_builder("flickr_ObjectToPhrase")
|
2023-10-22 18:37:45 +00:00
|
|
|
class CaptionToPhraseBuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = PhraseToObjectDataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/flickr/object_to_phrase.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
def build_datasets(self):
|
|
|
|
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
|
|
|
logging.info("Building datasets...")
|
|
|
|
self.build_processors()
|
|
|
|
build_info = self.config.build_info
|
|
|
|
datasets = dict()
|
|
|
|
|
|
|
|
# create datasets
|
|
|
|
dataset_cls = self.train_dataset_cls
|
|
|
|
datasets['train'] = dataset_cls(
|
|
|
|
vis_processor=self.vis_processors["train"],
|
|
|
|
text_processor=self.text_processors["train"],
|
|
|
|
ann_path=build_info.ann_path,
|
|
|
|
vis_root=build_info.image_path,
|
|
|
|
)
|
|
|
|
|
|
|
|
return datasets
|
|
|
|
|
|
|
|
|
2025-01-12 02:27:32 +00:00
|
|
|
@registry.register_builder("mvtec_ad")
|
|
|
|
class MVTECADBuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = MVTecDataset
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/mvtec/default.yaml",
|
|
|
|
}
|
|
|
|
def build_datasets(self):
|
|
|
|
logging.info("Building datasets...")
|
|
|
|
self.build_processors()
|
|
|
|
build_info = self.config.build_info
|
|
|
|
datasets = dict()
|
|
|
|
|
|
|
|
# create datasets
|
|
|
|
dataset_cls = self.train_dataset_cls
|
|
|
|
datasets['train'] = dataset_cls(
|
|
|
|
vis_processor=self.vis_processors["train"],
|
|
|
|
text_processor=self.text_processors["train"],
|
|
|
|
ann_path=build_info.ann_path,
|
|
|
|
vis_root=build_info.image_path,
|
|
|
|
)
|
|
|
|
|
|
|
|
return datasets
|
|
|
|
|
2023-10-22 18:37:45 +00:00
|
|
|
|
|
|
|
|
|
|
|
class DocumentVQABuilder(BaseDatasetBuilder):
|
|
|
|
def _download_ann(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def _download_vis(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def build(self):
|
|
|
|
self.build_processors()
|
|
|
|
build_info = self.config.build_info
|
|
|
|
|
|
|
|
datasets = dict()
|
|
|
|
split = "train"
|
|
|
|
|
|
|
|
dataset_cls = self.train_dataset_cls
|
|
|
|
datasets[split] = dataset_cls(
|
|
|
|
vis_processor=self.vis_processors[split],
|
|
|
|
text_processor=self.text_processors[split],
|
|
|
|
vis_root=build_info.image_path,
|
|
|
|
ann_path=build_info.ann_path
|
|
|
|
)
|
|
|
|
|
|
|
|
return datasets
|
|
|
|
|
|
|
|
|
|
|
|
@registry.register_builder("ocrvqa")
|
|
|
|
class OCRVQABuilder(DocumentVQABuilder):
|
|
|
|
train_dataset_cls = OCRVQADataset
|
|
|
|
DATASET_CONFIG_DICT = {"default": "configs/datasets/ocrvqa/ocrvqa.yaml"}
|
2023-04-16 22:04:16 +00:00
|
|
|
|
|
|
|
|
|
|
|
@registry.register_builder("cc_sbu")
|
|
|
|
class CCSBUBuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = CCSBUDataset
|
|
|
|
|
|
|
|
DATASET_CONFIG_DICT = {"default": "configs/datasets/cc_sbu/defaults.yaml"}
|
|
|
|
|
|
|
|
def _download_ann(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def _download_vis(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def build(self):
|
|
|
|
self.build_processors()
|
|
|
|
|
|
|
|
build_info = self.config.build_info
|
|
|
|
|
|
|
|
datasets = dict()
|
|
|
|
split = "train"
|
|
|
|
|
|
|
|
# create datasets
|
|
|
|
# [NOTE] return inner_datasets (wds.DataPipeline)
|
|
|
|
dataset_cls = self.train_dataset_cls
|
|
|
|
datasets[split] = dataset_cls(
|
|
|
|
vis_processor=self.vis_processors[split],
|
|
|
|
text_processor=self.text_processors[split],
|
|
|
|
location=build_info.storage,
|
|
|
|
).inner_dataset
|
|
|
|
|
|
|
|
return datasets
|
|
|
|
|
|
|
|
|
|
|
|
@registry.register_builder("laion")
|
|
|
|
class LaionBuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = LaionDataset
|
|
|
|
|
|
|
|
DATASET_CONFIG_DICT = {"default": "configs/datasets/laion/defaults.yaml"}
|
|
|
|
|
|
|
|
def _download_ann(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def _download_vis(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def build(self):
|
|
|
|
self.build_processors()
|
|
|
|
|
|
|
|
build_info = self.config.build_info
|
|
|
|
|
|
|
|
datasets = dict()
|
|
|
|
split = "train"
|
|
|
|
|
|
|
|
# create datasets
|
|
|
|
# [NOTE] return inner_datasets (wds.DataPipeline)
|
|
|
|
dataset_cls = self.train_dataset_cls
|
|
|
|
datasets[split] = dataset_cls(
|
|
|
|
vis_processor=self.vis_processors[split],
|
|
|
|
text_processor=self.text_processors[split],
|
|
|
|
location=build_info.storage,
|
|
|
|
).inner_dataset
|
|
|
|
|
|
|
|
return datasets
|
|
|
|
|
|
|
|
|
2023-10-23 04:05:27 +00:00
|
|
|
|
|
|
|
@registry.register_builder("coco_caption")
|
|
|
|
class COCOCapBuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = COCOCapDataset
|
|
|
|
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/coco/caption.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
2023-04-16 22:04:16 +00:00
|
|
|
@registry.register_builder("cc_sbu_align")
|
|
|
|
class CCSBUAlignBuilder(BaseDatasetBuilder):
|
|
|
|
train_dataset_cls = CCSBUAlignDataset
|
|
|
|
|
|
|
|
DATASET_CONFIG_DICT = {
|
|
|
|
"default": "configs/datasets/cc_sbu/align.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
def build_datasets(self):
|
|
|
|
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
|
|
|
logging.info("Building datasets...")
|
|
|
|
self.build_processors()
|
|
|
|
|
|
|
|
build_info = self.config.build_info
|
|
|
|
storage_path = build_info.storage
|
|
|
|
|
|
|
|
datasets = dict()
|
|
|
|
|
|
|
|
if not os.path.exists(storage_path):
|
2023-04-17 13:57:20 +00:00
|
|
|
warnings.warn("storage path {} does not exist.".format(storage_path))
|
2023-04-16 22:04:16 +00:00
|
|
|
|
|
|
|
# create datasets
|
|
|
|
dataset_cls = self.train_dataset_cls
|
|
|
|
datasets['train'] = dataset_cls(
|
|
|
|
vis_processor=self.vis_processors["train"],
|
|
|
|
text_processor=self.text_processors["train"],
|
|
|
|
ann_paths=[os.path.join(storage_path, 'filter_cap.json')],
|
|
|
|
vis_root=os.path.join(storage_path, 'image'),
|
|
|
|
)
|
|
|
|
|
|
|
|
return datasets
|