2023-11-23 05:39:24 +00:00
|
|
|
"""
|
|
|
|
Requires Transformer 4.28 and above, implementation may change according the Llama implementation
|
|
|
|
"""
|
|
|
|
import logging
|
|
|
|
import string
|
|
|
|
from packaging import version
|
|
|
|
import re
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch.cuda.amp import autocast as autocast
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
import transformers
|
|
|
|
|
|
|
|
from minigpt4.common.registry import registry
|
|
|
|
from minigpt4.models.blip2 import Blip2Base, disabled_train
|
|
|
|
|
|
|
|
@registry.register_model("blip2_vicuna_instruct")
|
|
|
|
class Blip2VicunaInstruct(Blip2Base):
|
|
|
|
"""
|
|
|
|
BLIP2 Vicuna model.
|
|
|
|
Supported model types:
|
|
|
|
- vicuna7b
|
|
|
|
- vicuna13b
|
|
|
|
Usage:
|
|
|
|
>>> from minigpt4.models import load_model
|
|
|
|
>>> import torch
|
|
|
|
>>> device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
2023-12-19 03:24:51 +00:00
|
|
|
>>> model = load_model("blip2_vicuna_instruct", "vicuna7b_qfmoe_route", device=device)
|
2023-11-23 05:39:24 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
PRETRAINED_MODEL_CONFIG_DICT = {
|
|
|
|
"vicuna7b_instruct": "configs/models/blip2/blip2_instruct_vicuna7b.yaml",
|
|
|
|
"vicuna7b_pretrain": "configs/models/blip2/blip2_pretrain_vicuna7b.yaml",
|
2023-12-19 03:24:51 +00:00
|
|
|
"vicuna7b_qfmoe_post": "configs/models/blip2/blip2_qformer_moe_post_vicuna7b.yaml",
|
|
|
|
"vicuna7b_qfmoe_route": "configs/models/blip2/blip2_pretrain_vicuna7b_route_moe.yaml",
|
2023-11-23 05:39:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
vit_model="eva_clip_g",
|
|
|
|
q_former_model="",
|
|
|
|
img_size=224,
|
|
|
|
drop_path_rate=0,
|
|
|
|
use_grad_checkpoint=False,
|
|
|
|
vit_precision="fp16",
|
|
|
|
freeze_vit=True,
|
|
|
|
freeze_llm=True,
|
|
|
|
freeze_qformer=False,
|
|
|
|
freeze_proj=False,
|
|
|
|
num_query_token=32,
|
|
|
|
llm_model="",
|
|
|
|
prompt="",
|
|
|
|
max_txt_len=128,
|
|
|
|
max_output_txt_len=256,
|
|
|
|
apply_lemmatizer=False,
|
|
|
|
qformer_text_input=True,
|
|
|
|
use_moeqformer=False,
|
2023-12-19 03:24:51 +00:00
|
|
|
use_route_moe=False,
|
|
|
|
moebert_num_beams=2,
|
2023-11-23 05:39:24 +00:00
|
|
|
moebert_expert_num=5,
|
|
|
|
moebert_route_method="gate-sentence",
|
|
|
|
moebert_load_balance = 0.1,
|
|
|
|
moe_topk = 1,
|
2023-12-19 03:24:51 +00:00
|
|
|
use_balance_loss = True,
|
|
|
|
moe_weight_type = "l2_norm",
|
|
|
|
gate_save_path = None,
|
2024-03-04 02:41:24 +00:00
|
|
|
bal_loss_decay_epoch = 3,
|
|
|
|
ln_position = "out",
|
2023-11-23 05:39:24 +00:00
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
transformers_version = version.parse(transformers.__version__)
|
|
|
|
assert transformers_version >= version.parse("4.28"), "BLIP-2 Vicuna requires transformers>=4.28"
|
|
|
|
from transformers import LlamaTokenizer
|
|
|
|
from minigpt4.models.modeling_llama import LlamaForCausalLM
|
|
|
|
|
|
|
|
self.tokenizer = self.init_tokenizer(truncation_side="left")
|
|
|
|
|
|
|
|
print('Initing & Loading VIT')
|
|
|
|
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
|
|
|
|
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
|
|
|
|
)
|
|
|
|
if freeze_vit:
|
|
|
|
for name, param in self.visual_encoder.named_parameters():
|
|
|
|
param.requires_grad = False
|
|
|
|
self.visual_encoder = self.visual_encoder.eval()
|
|
|
|
self.visual_encoder.train = disabled_train
|
|
|
|
# freeze ln vision
|
|
|
|
# for name, param in self.ln_vision.named_parameters():
|
|
|
|
# param.requires_grad = False
|
|
|
|
# self.ln_vision = self.ln_vision.eval()
|
|
|
|
# self.ln_vision.train = disabled_train
|
|
|
|
logging.info("freeze vision encoder but not ln_vision")
|
|
|
|
print('Loading VIT Done')
|
|
|
|
|
|
|
|
if use_moeqformer:
|
2023-12-19 03:24:51 +00:00
|
|
|
if use_route_moe:
|
|
|
|
self.Qformer, self.query_tokens = self.init_RouteMoEQformer(
|
|
|
|
num_query_token=num_query_token,
|
|
|
|
vision_width=self.visual_encoder.num_features,
|
|
|
|
moebert_expert_num=moebert_expert_num,
|
|
|
|
moebert_num_beams=moebert_num_beams,
|
|
|
|
route_method=moebert_route_method,
|
2024-01-10 08:56:52 +00:00
|
|
|
moe_weight_type=moe_weight_type,
|
2023-12-19 03:24:51 +00:00
|
|
|
cross_attention_freq=2
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
self.Qformer, self.query_tokens = self.init_QformerMoE(
|
|
|
|
num_query_token=num_query_token,
|
|
|
|
vision_width=self.visual_encoder.num_features,
|
|
|
|
moebert_expert_num=moebert_expert_num,
|
|
|
|
moebert_route_method=moebert_route_method,
|
|
|
|
moebert_load_balance=moebert_load_balance,
|
|
|
|
moe_topk=moe_topk,
|
|
|
|
use_balance_loss=use_balance_loss,
|
|
|
|
moe_weight_type=moe_weight_type,
|
2024-03-04 02:41:24 +00:00
|
|
|
cross_attention_freq=2,
|
|
|
|
ln_position=ln_position,
|
2023-12-19 03:24:51 +00:00
|
|
|
)
|
2023-11-23 05:39:24 +00:00
|
|
|
else:
|
|
|
|
self.Qformer, self.query_tokens = self.init_Qformer(
|
|
|
|
num_query_token, self.visual_encoder.num_features
|
|
|
|
)
|
|
|
|
|
|
|
|
if not qformer_text_input:
|
|
|
|
self.Qformer.bert.embeddings.word_embeddings = None
|
|
|
|
self.Qformer.bert.embeddings.position_embeddings = None
|
|
|
|
for layer in self.Qformer.bert.encoder.layer:
|
|
|
|
layer.output = None
|
|
|
|
layer.intermediate = None
|
|
|
|
else:
|
|
|
|
self.Qformer.resize_token_embeddings(len(self.tokenizer))
|
|
|
|
self.Qformer.cls = None
|
|
|
|
|
|
|
|
print("Loading LLM")
|
|
|
|
self.llm_tokenizer = LlamaTokenizer.from_pretrained(llm_model, use_fast=False, truncation_side="left")
|
|
|
|
self.llm_model = LlamaForCausalLM.from_pretrained(
|
|
|
|
llm_model, torch_dtype=torch.float16
|
|
|
|
)
|
|
|
|
# self.llm_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
|
|
|
# self.llm_tokenizer.add_special_tokens({'bos_token': '</s>'})
|
|
|
|
# self.llm_tokenizer.add_special_tokens({'eos_token': '</s>'})
|
|
|
|
# self.llm_tokenizer.add_special_tokens({'unk_token': '</s>'})
|
|
|
|
self.llm_tokenizer.pad_token = self.llm_tokenizer.unk_token
|
|
|
|
self.llm_model.resize_token_embeddings(len(self.llm_tokenizer))
|
|
|
|
# self.eos_token_id = self.llm_tokenizer(
|
|
|
|
# self.llm_tokenizer.eos_token, add_special_tokens=False
|
|
|
|
# ).input_ids[0]
|
|
|
|
if freeze_llm:
|
|
|
|
for name, param in self.llm_model.named_parameters():
|
|
|
|
param.requires_grad = False
|
|
|
|
|
|
|
|
self.llm_proj = nn.Linear(
|
|
|
|
self.Qformer.config.hidden_size, self.llm_model.config.hidden_size
|
|
|
|
)
|
|
|
|
|
|
|
|
if qformer_text_input:
|
|
|
|
# Hard-coded to load from BLIP-2 stage-1 pre-trained model( to init ffn but not ideal)
|
|
|
|
self.load_from_pretrained(
|
2023-12-19 03:24:51 +00:00
|
|
|
url_or_filename="/mnt/pfs-guan-ssai/nlu/wanghanzi/models/blip2/blip2_pretrained/blip2_pretrained.pth",
|
|
|
|
num_query_token=num_query_token
|
2023-11-23 05:39:24 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
if use_moeqformer:
|
|
|
|
# load blip2_vicuna_pretrain to init query_ffn
|
2023-12-19 03:24:51 +00:00
|
|
|
self.load_from_pretrained(
|
|
|
|
url_or_filename=q_former_model,
|
|
|
|
num_query_token=num_query_token
|
|
|
|
)
|
2023-11-23 05:39:24 +00:00
|
|
|
|
|
|
|
# init MoE Layer(init moe ffn by blip2 query ffn)
|
|
|
|
state_dict = self.Qformer.state_dict()
|
|
|
|
for name, param in self.Qformer.named_parameters():
|
|
|
|
if "_query" in name and "experts.experts" in name:
|
|
|
|
pattern = r'\.experts\.experts\.\d+'
|
|
|
|
key_orig = re.sub(pattern, '', name)
|
|
|
|
param.data.copy_(state_dict[key_orig]) # copy state_dict[key_orig] to param
|
|
|
|
if "experts.intermediate_query" in name or "experts.output_query" in name:
|
|
|
|
key_orig = re.sub(r'experts\.', '', name)
|
|
|
|
param.data.copy_(state_dict[key_orig]) # copy state_dict[key_orig] to param
|
|
|
|
if "_query" in name and "experts" not in name: # raw ffn_query not update
|
|
|
|
param.requires_grad = False
|
|
|
|
|
2024-01-10 08:56:52 +00:00
|
|
|
ln_pattern = r"bert\.encoder\.layer\.\d+\.expert_ln\.(weight|bias)"
|
|
|
|
if re.match(ln_pattern, name):
|
|
|
|
key_orig = re.sub('expert_ln', 'output_query.LayerNorm', name)
|
|
|
|
param.data.copy_(state_dict[key_orig])
|
|
|
|
d1_pattern = r"bert\.encoder\.layer\.(\d+)\.experts(\.|\.experts\.\d+\.)dense1\.(weight|bias)"
|
|
|
|
if re.match(d1_pattern, name):
|
|
|
|
key_orig = re.sub(r'experts(\.|\.experts\.\d+\.)dense1', 'intermediate_query.dense', name)
|
|
|
|
param.data.copy_(state_dict[key_orig])
|
|
|
|
d2_pattern = r"bert\.encoder\.layer\.(\d+)\.experts(\.|\.experts\.\d+\.)dense2\.(weight|bias)"
|
|
|
|
if re.match(d2_pattern, name):
|
|
|
|
key_orig = re.sub(r'experts(\.|\.experts\.\d+\.)dense2', 'output_query.dense', name)
|
|
|
|
param.data.copy_(state_dict[key_orig])
|
|
|
|
|
2023-11-23 05:39:24 +00:00
|
|
|
# freeze qformer
|
|
|
|
if freeze_qformer:
|
|
|
|
for name, param in self.Qformer.named_parameters():
|
|
|
|
param.requires_grad = False
|
|
|
|
self.Qformer = self.Qformer.eval()
|
|
|
|
self.Qformer.train = disabled_train
|
|
|
|
logging.info("freeze Qformer")
|
|
|
|
|
|
|
|
# After loading, freeze llm_proj
|
|
|
|
if freeze_proj:
|
|
|
|
for name, param in self.llm_proj.named_parameters():
|
|
|
|
param.requires_grad = False
|
|
|
|
self.llm_proj = self.llm_proj.eval()
|
|
|
|
self.llm_proj.train = disabled_train
|
|
|
|
|
|
|
|
self.max_txt_len = max_txt_len
|
|
|
|
self.max_output_txt_len = max_output_txt_len
|
|
|
|
self.prompt = prompt
|
|
|
|
prompt_tokens = self.llm_tokenizer(self.prompt, return_tensors="pt")
|
|
|
|
self.prompt_length = prompt_tokens.attention_mask.sum(1)
|
|
|
|
|
|
|
|
self._lemmatizer = None
|
|
|
|
|
|
|
|
self.qformer_text_input = qformer_text_input
|
|
|
|
self.use_moeqformer = use_moeqformer
|
2023-12-19 03:24:51 +00:00
|
|
|
self.use_route_moe = use_route_moe
|
2023-11-23 05:39:24 +00:00
|
|
|
self.moebert_load_balance = moebert_load_balance
|
2024-01-10 08:56:52 +00:00
|
|
|
self.moebert_num_beams = moebert_num_beams
|
2023-11-23 05:39:24 +00:00
|
|
|
|
2023-12-19 03:24:51 +00:00
|
|
|
self.gate_save_path = gate_save_path
|
2024-03-04 02:41:24 +00:00
|
|
|
self.bal_loss_decay_epoch = bal_loss_decay_epoch
|
2023-12-19 03:24:51 +00:00
|
|
|
# if self.gate_save_path != None:
|
|
|
|
# import os
|
|
|
|
# if not os.path.exists(self.gate_save_path):
|
|
|
|
# os.mkdir(self.gate_save_path)
|
|
|
|
|
|
|
|
|
2023-11-23 05:39:24 +00:00
|
|
|
def concat_text_input_output(self, input_ids, input_atts, output_ids, output_atts):
|
|
|
|
input_part_targets_len = []
|
|
|
|
llm_tokens = {"input_ids": [], "attention_mask": []}
|
|
|
|
for i in range(input_ids.size(0)):
|
|
|
|
this_input_ones = input_atts[i].sum()
|
|
|
|
input_part_targets_len.append(this_input_ones)
|
|
|
|
llm_tokens['input_ids'].append(
|
|
|
|
torch.cat([
|
|
|
|
input_ids[i][:this_input_ones],
|
|
|
|
output_ids[i][1:],
|
|
|
|
input_ids[i][this_input_ones:]
|
|
|
|
])
|
|
|
|
)
|
|
|
|
llm_tokens['attention_mask'].append(
|
|
|
|
torch.cat([
|
|
|
|
input_atts[i][:this_input_ones],
|
|
|
|
output_atts[i][1:],
|
|
|
|
input_atts[i][this_input_ones:]
|
|
|
|
])
|
|
|
|
)
|
|
|
|
llm_tokens['input_ids'] = torch.stack(llm_tokens['input_ids'])
|
|
|
|
llm_tokens['attention_mask'] = torch.stack(llm_tokens['attention_mask'])
|
|
|
|
return llm_tokens, input_part_targets_len
|
|
|
|
|
|
|
|
def forward(self, samples):
|
|
|
|
# print('-----------------')
|
|
|
|
# print(samples["text_input"])
|
|
|
|
# print(samples["text_output"])
|
|
|
|
# print('-----------------')
|
2024-01-10 08:56:52 +00:00
|
|
|
# import pdb;pdb.set_trace() # 0107test
|
2023-11-23 05:39:24 +00:00
|
|
|
image = samples["image"]
|
|
|
|
with self.maybe_autocast():
|
|
|
|
image_embeds = self.ln_vision(self.visual_encoder(image))
|
|
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
|
|
|
|
bs = image.size(0)
|
|
|
|
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
|
|
|
|
|
|
if self.qformer_text_input:
|
|
|
|
text_Qformer = self.tokenizer(
|
|
|
|
samples["q_input"],
|
|
|
|
padding='longest',
|
|
|
|
truncation=True,
|
|
|
|
max_length=self.max_txt_len,
|
|
|
|
return_tensors="pt",
|
|
|
|
).to(image.device)
|
|
|
|
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
|
|
|
|
Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask],dim=1)
|
|
|
|
|
|
|
|
query_output = self.Qformer.bert(
|
|
|
|
text_Qformer.input_ids,
|
|
|
|
attention_mask=Qformer_atts,
|
|
|
|
query_embeds=query_tokens,
|
|
|
|
encoder_hidden_states=image_embeds,
|
|
|
|
encoder_attention_mask=image_atts,
|
|
|
|
return_dict=True,
|
2023-12-19 03:24:51 +00:00
|
|
|
output_hidden_states=True,
|
2023-11-23 05:39:24 +00:00
|
|
|
)
|
|
|
|
else:
|
|
|
|
query_output = self.Qformer.bert(
|
|
|
|
query_embeds=query_tokens,
|
|
|
|
encoder_hidden_states=image_embeds,
|
|
|
|
encoder_attention_mask=image_atts,
|
|
|
|
return_dict=True,
|
2023-12-19 03:24:51 +00:00
|
|
|
output_hidden_states=True,
|
2023-11-23 05:39:24 +00:00
|
|
|
)
|
2024-01-10 08:56:52 +00:00
|
|
|
# import pdb; pdb.set_trace()# 0107test
|
2023-11-23 05:39:24 +00:00
|
|
|
query_output_to_linear = query_output.last_hidden_state[:,:query_tokens.size(1),:]
|
2023-12-19 03:24:51 +00:00
|
|
|
|
2024-01-10 08:56:52 +00:00
|
|
|
if self.use_moeqformer:
|
2023-12-19 03:24:51 +00:00
|
|
|
gate_loss = query_output.gate_loss # only available in QformerMoE
|
|
|
|
|
|
|
|
if self.gate_save_path != None:
|
|
|
|
all_hidden_states = query_output.hidden_states
|
|
|
|
# prob_gate_normalized = query_output.gate_loads
|
|
|
|
beam_scores = query_output.beam_scores
|
|
|
|
expert_route = query_output.expert_route
|
|
|
|
|
|
|
|
gate_route = list()
|
|
|
|
import numpy as np
|
|
|
|
import json
|
|
|
|
import os
|
|
|
|
try:
|
|
|
|
for i in range(len(samples['image_id'])):
|
|
|
|
image_id = samples['image_id'][i]
|
|
|
|
gate_route.append({
|
|
|
|
'iters': samples['iters'],
|
|
|
|
'image_id':image_id,
|
|
|
|
'q_input': samples['q_input'][i],
|
|
|
|
'text_output': samples['text_output'][i],
|
|
|
|
'beam_scores': beam_scores[i].tolist(),
|
|
|
|
'expert_route': expert_route[i].tolist(),
|
|
|
|
# 'gate_route_11': prob_gate_normalized[10][i].tolist(),
|
|
|
|
# 'gate_route_9': prob_gate_normalized[8][i].tolist(),
|
|
|
|
# 'gate_route_7': prob_gate_normalized[6][i].tolist(),
|
|
|
|
# 'gate_route_5': prob_gate_normalized[4][i].tolist(),
|
|
|
|
# 'gate_route_3': prob_gate_normalized[2][i].tolist(),
|
|
|
|
# 'gate_route_1': prob_gate_normalized[0][i].tolist(),
|
|
|
|
})
|
|
|
|
# for layer in [6,8,10]:
|
2024-01-10 08:56:52 +00:00
|
|
|
# layer_data = all_hidden_states[layer]s
|
2023-12-19 03:24:51 +00:00
|
|
|
# file_path = os.path.join(self.gate_save_path, f'{image_id}_{str(layer)}.npy')
|
|
|
|
# x = layer_data.data.cpu().numpy()
|
|
|
|
# np.save(file_path,x)
|
|
|
|
|
|
|
|
with open(os.path.join(self.gate_save_path, 'train_save_beam.json'),'a+') as f:
|
|
|
|
f.write(f"{json.dumps(gate_route)}\n")
|
|
|
|
except Exception as e:
|
|
|
|
print("Gate Save Error....")
|
|
|
|
print(e)
|
|
|
|
|
2023-11-23 05:39:24 +00:00
|
|
|
inputs_llm = self.llm_proj(query_output_to_linear)
|
|
|
|
atts_llm = torch.ones(inputs_llm.size()[:-1], dtype=torch.long).to(image.device)
|
|
|
|
|
|
|
|
self.llm_tokenizer.padding_side = "right"
|
|
|
|
self.llm_tokenizer.truncation_side = 'left'
|
|
|
|
text_input_tokens = self.llm_tokenizer(
|
|
|
|
samples['llm_input'],
|
|
|
|
return_tensors="pt",
|
|
|
|
padding="longest",
|
|
|
|
truncation=True,
|
|
|
|
max_length=self.max_txt_len,
|
|
|
|
).to(image.device)
|
|
|
|
|
|
|
|
self.llm_tokenizer.truncation_side = 'right'
|
|
|
|
text_output_tokens = self.llm_tokenizer(
|
|
|
|
[t + self.llm_tokenizer.eos_token for t in samples['text_output']],
|
|
|
|
return_tensors="pt",
|
|
|
|
padding="longest",
|
|
|
|
truncation=True,
|
|
|
|
max_length=self.max_output_txt_len,
|
|
|
|
).to(image.device)
|
|
|
|
|
|
|
|
llm_tokens, input_part_targets_len = self.concat_text_input_output(
|
|
|
|
text_input_tokens.input_ids,
|
|
|
|
text_input_tokens.attention_mask,
|
|
|
|
text_output_tokens.input_ids,
|
|
|
|
text_output_tokens.attention_mask,
|
|
|
|
)
|
|
|
|
|
|
|
|
# do not apply loss to the padding
|
|
|
|
targets = llm_tokens['input_ids'].masked_fill(
|
|
|
|
llm_tokens['input_ids'] == self.llm_tokenizer.pad_token_id, -100
|
|
|
|
)
|
|
|
|
|
|
|
|
# do not apply loss to the text input (i.e., instruction)
|
|
|
|
for i, l in enumerate(input_part_targets_len):
|
|
|
|
targets[i][:l] = -100
|
|
|
|
|
|
|
|
# do not apply loss to the query tokens
|
|
|
|
empty_targets = (
|
|
|
|
torch.ones(atts_llm.size(), dtype=torch.long).to(image.device).fill_(-100)
|
|
|
|
)
|
|
|
|
targets = torch.cat([empty_targets, targets], dim=1)
|
|
|
|
|
|
|
|
inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens['input_ids'])
|
|
|
|
inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1)
|
|
|
|
attention_mask = torch.cat([atts_llm, llm_tokens['attention_mask']], dim=1)
|
|
|
|
|
|
|
|
with self.maybe_autocast():
|
|
|
|
outputs = self.llm_model(
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
return_dict=True,
|
|
|
|
labels=targets,
|
|
|
|
)
|
2024-03-04 02:41:24 +00:00
|
|
|
|
2024-01-10 08:56:52 +00:00
|
|
|
if self.use_moeqformer:
|
2024-03-04 02:41:24 +00:00
|
|
|
if samples['epoch'] > self.bal_loss_decay_epoch:
|
|
|
|
loss = outputs.loss
|
|
|
|
else:
|
|
|
|
loss = outputs.loss + self.moebert_load_balance * gate_loss
|
2023-11-23 05:39:24 +00:00
|
|
|
else:
|
|
|
|
loss = outputs.loss
|
|
|
|
|
|
|
|
return {"loss": loss}
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def generate(
|
|
|
|
self,
|
|
|
|
samples,
|
|
|
|
use_nucleus_sampling=False,
|
|
|
|
num_beams=5,
|
|
|
|
max_length=256,
|
|
|
|
min_length=1,
|
|
|
|
top_p=0.9,
|
|
|
|
repetition_penalty=1.5,
|
|
|
|
length_penalty=1,
|
|
|
|
num_captions=1,
|
|
|
|
temperature=1,
|
|
|
|
):
|
|
|
|
self.llm_tokenizer.padding_side = "left"
|
|
|
|
|
|
|
|
image = samples["image"]
|
|
|
|
bs = image.size(0)
|
|
|
|
|
|
|
|
query_tokens = self.query_tokens.expand(bs, -1, -1)
|
|
|
|
if self.qformer_text_input:
|
|
|
|
text_Qformer = self.tokenizer(
|
|
|
|
samples["q_input"],
|
|
|
|
padding='longest',
|
|
|
|
truncation=True,
|
|
|
|
max_length=self.max_txt_len,
|
|
|
|
return_tensors="pt",
|
|
|
|
).to(image.device)
|
|
|
|
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
|
|
|
|
Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1)
|
|
|
|
|
|
|
|
with self.maybe_autocast():
|
|
|
|
image_embeds = self.ln_vision(self.visual_encoder(image))
|
|
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
|
|
|
|
|
|
|
|
if self.qformer_text_input:
|
|
|
|
query_output = self.Qformer.bert(
|
|
|
|
text_Qformer.input_ids,
|
|
|
|
attention_mask=Qformer_atts,
|
|
|
|
query_embeds=query_tokens,
|
|
|
|
encoder_hidden_states=image_embeds,
|
|
|
|
encoder_attention_mask=image_atts,
|
|
|
|
return_dict=True,
|
2023-12-19 03:24:51 +00:00
|
|
|
output_hidden_states=True,
|
2023-11-23 05:39:24 +00:00
|
|
|
)
|
|
|
|
else:
|
|
|
|
query_output = self.Qformer.bert(
|
|
|
|
query_embeds=query_tokens,
|
|
|
|
encoder_hidden_states=image_embeds,
|
|
|
|
encoder_attention_mask=image_atts,
|
|
|
|
return_dict=True,
|
2023-12-19 03:24:51 +00:00
|
|
|
output_hidden_states=True,
|
2023-11-23 05:39:24 +00:00
|
|
|
)
|
|
|
|
|
2024-01-10 08:56:52 +00:00
|
|
|
# import pdb; pdb.set_trace()
|
|
|
|
|
2023-12-19 03:24:51 +00:00
|
|
|
if self.gate_save_path != None:
|
|
|
|
all_hidden_states = query_output.hidden_states
|
|
|
|
# prob_gate_normalized = query_output.gate_loads
|
|
|
|
beam_scores = query_output.beam_scores
|
|
|
|
expert_route = query_output.expert_route
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import json
|
|
|
|
import os
|
|
|
|
gate_route = list()
|
|
|
|
try:
|
|
|
|
for i in range(len(samples['image_id'])):
|
|
|
|
source = samples['source'][i]
|
|
|
|
if source in ['gqa']:
|
|
|
|
image_id = samples['image_id'][i].split('.')[0]
|
|
|
|
else:
|
|
|
|
image_id = samples['image_id'][i].split('/')[-1].split('.')[0]
|
|
|
|
gate_route.append({
|
|
|
|
'source': source,
|
|
|
|
'image_id':image_id,
|
|
|
|
'q_input': samples['q_input'][i],
|
|
|
|
'beam_scores': beam_scores[i].tolist(),
|
|
|
|
'expert_route': expert_route[i].tolist(),
|
|
|
|
# 'gate_route_11': prob_gate_normalized[10][i].tolist(),
|
|
|
|
# 'gate_route_9': prob_gate_normalized[8][i].tolist(),
|
|
|
|
# 'gate_route_7': prob_gate_normalized[6][i].tolist(),
|
|
|
|
# 'gate_route_5': prob_gate_normalized[4][i].tolist(),
|
|
|
|
# 'gate_route_3': prob_gate_normalized[2][i].tolist(),
|
|
|
|
# 'gate_route_1': prob_gate_normalized[0][i].tolist(),
|
|
|
|
})
|
2024-01-10 08:56:52 +00:00
|
|
|
for layer in [6,7,8,9,10,11]:
|
|
|
|
if layer in [6,11]:
|
|
|
|
layer_data = all_hidden_states[layer][i, :, :]
|
2023-12-19 03:24:51 +00:00
|
|
|
else:
|
2024-01-10 08:56:52 +00:00
|
|
|
layer_data = all_hidden_states[layer][i*self.moebert_num_beams, :, :]
|
2023-12-19 03:24:51 +00:00
|
|
|
file_path = os.path.join(self.gate_save_path, f'{image_id}_{str(layer)}.npy')
|
|
|
|
x = layer_data.data.cpu().numpy()
|
|
|
|
np.save(file_path,x) # 大功告成
|
|
|
|
|
|
|
|
with open(os.path.join(self.gate_save_path, 'generate_save_beam.json'),'a+') as f:
|
|
|
|
f.write(f"{json.dumps(gate_route)}\n")
|
|
|
|
except Exception as e:
|
|
|
|
print("Gate Save Error....")
|
|
|
|
print(e)
|
|
|
|
|
2023-11-23 05:39:24 +00:00
|
|
|
inputs_llm = self.llm_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:])
|
|
|
|
atts_llm = torch.ones(inputs_llm.size()[:-1], dtype=torch.long).to(image.device)
|
|
|
|
|
|
|
|
llm_tokens = self.llm_tokenizer(
|
|
|
|
samples['llm_input'],
|
|
|
|
padding="longest",
|
|
|
|
return_tensors="pt"
|
|
|
|
).to(image.device)
|
|
|
|
|
|
|
|
with self.maybe_autocast():
|
|
|
|
inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens.input_ids)
|
2024-03-04 02:41:24 +00:00
|
|
|
|
|
|
|
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/multimodal/PromptMoE/embedding/"
|
|
|
|
# np.save(os.join(path, "inputs_llm.npy"), inputs_llm.cpu().numpy)
|
|
|
|
# np.save(os.join(path, "inputs_llm.npy"), self.llm_model.get_input_embeddings().weight.cpu().numpy)
|
|
|
|
# samples_copy = samples.copy()
|
|
|
|
# samples_copy.pop('image', None)
|
|
|
|
# with open(os.path.join(path, 'test_samples.json'),'a+') as f:
|
|
|
|
# f.write(f"{json.dumps(samples_copy)}\n")
|
|
|
|
|
|
|
|
|
2023-11-23 05:39:24 +00:00
|
|
|
inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1)
|
|
|
|
attention_mask = torch.cat([atts_llm, llm_tokens.attention_mask], dim=1)
|
|
|
|
|
|
|
|
outputs = self.llm_model.generate(
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
do_sample=use_nucleus_sampling,
|
|
|
|
top_p=top_p,
|
|
|
|
temperature=temperature,
|
|
|
|
num_beams=num_beams,
|
|
|
|
max_length=max_length,
|
|
|
|
min_length=min_length,
|
|
|
|
# eos_token_id=self.eos_token_id,
|
|
|
|
repetition_penalty=repetition_penalty,
|
|
|
|
length_penalty=length_penalty,
|
|
|
|
num_return_sequences=num_captions,
|
|
|
|
)
|
|
|
|
|
|
|
|
# outputs[outputs == 0] = 2 # convert output id 0 to 2 (eos_token_id)
|
|
|
|
output_text = self.llm_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
|
|
|
output_text = [text.strip() for text in output_text]
|
|
|
|
|
|
|
|
return output_text
|
|
|
|
|
|
|
|
def predict_answers(
|
|
|
|
self,
|
|
|
|
samples,
|
|
|
|
num_beams=5,
|
|
|
|
inference_method="generate",
|
|
|
|
max_len=10,
|
|
|
|
min_len=1,
|
|
|
|
num_ans_candidates=128,
|
|
|
|
answer_list=None,
|
|
|
|
prompt="",
|
|
|
|
length_penalty=0,
|
|
|
|
**kwargs
|
|
|
|
):
|
|
|
|
if isinstance(samples["llm_input"], str):
|
|
|
|
samples["llm_input"] = [samples["llm_input"]]
|
|
|
|
|
|
|
|
# if prompt:
|
|
|
|
# if prompt.count("{}") == 2:
|
|
|
|
# if 'ocr_tokens' in samples:
|
|
|
|
# text_input = [
|
|
|
|
# prompt.format(', '.join(samples['ocr_tokens'][i][:30]), samples["llm_input"][i])
|
|
|
|
# for i in range(len(samples["llm_input"]))]
|
|
|
|
# elif 'choices' in samples:
|
|
|
|
# text_input = []
|
|
|
|
# for i in range(len(samples["llm_input"])):
|
|
|
|
# this_choices = [f"({string.ascii_lowercase[j]}) {ch}" for j, ch in enumerate(samples["choices"][i])]
|
|
|
|
# this_choices = " ".join(this_choices)
|
|
|
|
# text_input.append(prompt.format(samples["llm_input"][i], this_choices))
|
|
|
|
# else:
|
|
|
|
# text_input = [prompt.format(question) for question in samples["llm_input"]]
|
|
|
|
# else:
|
|
|
|
# text_input = samples["llm_input"]
|
|
|
|
|
|
|
|
# samples["prompt"] = text_input
|
|
|
|
|
|
|
|
output_text = self.generate(
|
|
|
|
samples,
|
|
|
|
num_beams=num_beams,
|
|
|
|
max_length=max_len,
|
|
|
|
min_length=min_len,
|
|
|
|
length_penalty=length_penalty
|
|
|
|
)
|
|
|
|
|
|
|
|
if "apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]:
|
|
|
|
output_text = self._lemmatize(output_text)
|
|
|
|
|
|
|
|
return output_text
|
|
|
|
|
|
|
|
def _lemmatize(self, answers):
|
|
|
|
def apply(answer):
|
|
|
|
doc = self.lemmatizer(answer)
|
|
|
|
|
|
|
|
words = []
|
|
|
|
for token in doc:
|
|
|
|
if token.pos_ in ["NOUN", "VERB"]:
|
|
|
|
words.append(token.lemma_)
|
|
|
|
else:
|
|
|
|
words.append(token.text)
|
|
|
|
answer = " ".join(words)
|
|
|
|
|
|
|
|
return answer
|
|
|
|
|
|
|
|
return [apply(answer) for answer in answers]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def lemmatizer(self):
|
|
|
|
if self._lemmatizer is None:
|
|
|
|
try:
|
|
|
|
import spacy
|
|
|
|
|
|
|
|
self._lemmatizer = spacy.load("en_core_web_sm")
|
|
|
|
except ImportError:
|
|
|
|
logging.error(
|
|
|
|
"""
|
|
|
|
Please install spacy and en_core_web_sm model to apply lemmatization.
|
|
|
|
python -m spacy download en_core_web_sm
|
|
|
|
OR
|
|
|
|
import spacy.cli
|
|
|
|
spacy.cli.download("en_core_web_sm")
|
|
|
|
"""
|
|
|
|
)
|
|
|
|
exit(1)
|
|
|
|
|
|
|
|
return self._lemmatizer
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_config(cls, cfg):
|
|
|
|
vit_model = cfg.get("vit_model", "eva_clip_g")
|
|
|
|
q_former_model = cfg.get("q_former_model", "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/blip2/blip2_vicuna7b/blip2_pretrained_vicuna7b.pth")
|
|
|
|
img_size = cfg.get("image_size")
|
|
|
|
num_query_token = cfg.get("num_query_token")
|
|
|
|
llm_model = cfg.get("llm_model")
|
|
|
|
|
|
|
|
drop_path_rate = cfg.get("drop_path_rate", 0)
|
|
|
|
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
|
|
|
|
vit_precision = cfg.get("vit_precision", "fp16")
|
|
|
|
freeze_vit = cfg.get("freeze_vit", True)
|
|
|
|
freeze_llm = cfg.get("freeze_llm", True)
|
|
|
|
freeze_qformer = cfg.get("freeze_qformer", False)
|
|
|
|
freeze_proj = cfg.get("freeze_proj", False)
|
|
|
|
|
|
|
|
prompt = cfg.get("prompt", "")
|
|
|
|
max_txt_len = cfg.get("max_txt_len", 128)
|
|
|
|
max_output_txt_len = cfg.get("max_output_txt_len", 256)
|
|
|
|
apply_lemmatizer = cfg.get("apply_lemmatizer", False)
|
|
|
|
|
|
|
|
qformer_text_input = cfg.get("qformer_text_input", True)
|
|
|
|
|
|
|
|
use_moeqformer = cfg.get("use_moeqformer", False)
|
2023-12-19 03:24:51 +00:00
|
|
|
use_route_moe = cfg.get("use_route_moe", False)
|
|
|
|
moebert_num_beams = cfg.get("moebert_num_beams", 2)
|
2023-11-23 05:39:24 +00:00
|
|
|
moebert_expert_num = cfg.get("moebert_expert_num", 5)
|
|
|
|
moebert_route_method = cfg.get("moebert_route_method", "gate-sentence")
|
|
|
|
moebert_load_balance = cfg.get("moebert_load_balance", 0.1)
|
|
|
|
moe_topk = cfg.get("moe_topk", 1)
|
2023-12-19 03:24:51 +00:00
|
|
|
use_balance_loss = cfg.get("use_balance_loss", True)
|
|
|
|
moe_weight_type = cfg.get("moe_weight_type",'l2_norm')
|
|
|
|
gate_save_path = cfg.get("gate_save_path", None)
|
2024-03-04 02:41:24 +00:00
|
|
|
bal_loss_decay_epoch = cfg.get("bal_loss_decay_epoch", 3)
|
|
|
|
ln_position = cfg.get("ln_position","out")
|
2023-11-23 05:39:24 +00:00
|
|
|
|
|
|
|
model = cls(
|
|
|
|
vit_model=vit_model,
|
|
|
|
img_size=img_size,
|
|
|
|
q_former_model=q_former_model,
|
|
|
|
drop_path_rate=drop_path_rate,
|
|
|
|
use_grad_checkpoint=use_grad_checkpoint,
|
|
|
|
vit_precision=vit_precision,
|
|
|
|
freeze_vit=freeze_vit,
|
|
|
|
freeze_llm=freeze_llm,
|
|
|
|
freeze_qformer=freeze_qformer,
|
|
|
|
freeze_proj=freeze_proj,
|
|
|
|
num_query_token=num_query_token,
|
|
|
|
llm_model=llm_model,
|
|
|
|
prompt=prompt,
|
|
|
|
max_txt_len=max_txt_len,
|
|
|
|
max_output_txt_len=max_output_txt_len,
|
|
|
|
apply_lemmatizer=apply_lemmatizer,
|
|
|
|
qformer_text_input=qformer_text_input,
|
|
|
|
use_moeqformer=use_moeqformer,
|
2023-12-19 03:24:51 +00:00
|
|
|
use_route_moe=use_route_moe,
|
|
|
|
moebert_num_beams=moebert_num_beams,
|
2023-11-23 05:39:24 +00:00
|
|
|
moebert_expert_num=moebert_expert_num,
|
|
|
|
moebert_route_method=moebert_route_method,
|
|
|
|
moebert_load_balance=moebert_load_balance,
|
|
|
|
moe_topk=moe_topk,
|
2023-12-19 03:24:51 +00:00
|
|
|
use_balance_loss=use_balance_loss,
|
|
|
|
moe_weight_type=moe_weight_type,
|
|
|
|
gate_save_path=gate_save_path,
|
2024-03-04 02:41:24 +00:00
|
|
|
bal_loss_decay_epoch=bal_loss_decay_epoch,
|
|
|
|
ln_position=ln_position,
|
2023-11-23 05:39:24 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
# if qformer_text_input:
|
|
|
|
# # Hard-coded to load from BLIP-2 stage-1 pre-trained model (not ideal)
|
|
|
|
# model.load_from_pretrained(
|
|
|
|
# url_or_filename="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained.pth"
|
|
|
|
# )
|
|
|
|
|
|
|
|
model.load_checkpoint_from_config(cfg)
|
|
|
|
|
|
|
|
# check update params
|
|
|
|
print("Updating following parameters:")
|
|
|
|
for name, param in model.named_parameters():
|
|
|
|
if param.requires_grad == True:
|
|
|
|
print(name)
|
2024-01-10 08:56:52 +00:00
|
|
|
# [name for name, param in model.named_parameters() if (param.requires_grad == False and 'Qformer' in name and 'intermediate_query' in name)]
|
|
|
|
# import pdb; pdb.set_trace()# 0107test
|
2023-11-23 05:39:24 +00:00
|
|
|
return model
|