mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-05 02:20:47 +00:00
42 lines
1.6 KiB
Markdown
42 lines
1.6 KiB
Markdown
|
## Transfer Learning Experiments
|
||
|
|
||
|
We use the following training/prediction scripts for the classifier, zero-shot, and contrastive experiments in Table 3.
|
||
|
|
||
|
```bash
|
||
|
## Training
|
||
|
python transfer_experiments/train.py --aokvqa-dir ${AOKVQA_DIR} --vocab ${AOKVQA_DIR}/large_vocab_train.csv --log-dir ${LOG_DIR}
|
||
|
|
||
|
--backbone clip --clip-model-type ViT-B/32 --train-features ${FEATURES_DIR}/clip-ViT-B-32_train.pt --val-features ${FEATURES_DIR}/clip-ViT-B-32_val.pt
|
||
|
--inputs question # OR --inputs image # OR --inputs question image
|
||
|
# OR
|
||
|
--backbone resnet --train-features ${FEATURES_DIR}/resnet_train.pt --val-features ${FEATURES_DIR}/resnet_val.pt --inputs image
|
||
|
# OR
|
||
|
--backbone bert --train-features ${FEATURES_DIR}/bert_train.pt --val-features ${FEATURES_DIR}/bert_val.pt --inputs question
|
||
|
|
||
|
--objective classifier
|
||
|
# OR
|
||
|
--objective contrastive --vocab-features ${FEATURE_DIR}/clip-ViT-B-32_large_vocab.pt
|
||
|
```
|
||
|
|
||
|
You can make predictions for CLIP zero-shot or from a classifier/contrastive checkpoint trained above.
|
||
|
|
||
|
```bash
|
||
|
## Predicting
|
||
|
python transfer_experiments/predict.py --aokvqa-dir ${AOKVQA_DIR} --out ${PREDS_DIR}/clip-classifier_val-mc.json
|
||
|
|
||
|
--split val # or test
|
||
|
--features ${FEATURE_DIR}/clip-ViT-B-32_val.pt # adjust for backbone and eval split
|
||
|
|
||
|
--ckpt path/to/model.ckpt
|
||
|
# OR
|
||
|
--zero-shot --clip-model-type ViT-B/32
|
||
|
--inputs question # OR --inputs image # OR --inputs question image
|
||
|
|
||
|
--mc # Multiple-choice. Exclude for direct-answer.
|
||
|
|
||
|
# IF classifier OR direct-answer
|
||
|
--vocab ${AOKVQA_DIR}/large_vocab_train.csv
|
||
|
# IF contrastive/zero-shot AND direct-answer
|
||
|
--vocab-features ${FEATURES_DIR}/clip-ViT-B-32_large_vocab.pt
|
||
|
```
|