MiniGPT-4/eval_scripts/EVAL_README.md

66 lines
2.5 KiB
Markdown
Raw Normal View History

2023-10-31 01:56:49 +00:00
## Evaluation Instruction for MiniGPT-v2
### Data preparation
2023-10-31 02:37:37 +00:00
Images download
Image source | Download path
--- | :---:
OKVQA| <a href="https://drive.google.com/drive/folders/1jxIgAhtaLu_YqnZEl8Ym11f7LhX3nptN?usp=sharing">annotations</a> &nbsp;&nbsp; <a href="http://images.cocodataset.org/zips/train2017.zip"> images</a>
gqa | <a href="https://drive.google.com/drive/folders/1-dF-cgFwstutS4qq2D9CFQTDS0UTmIft?usp=drive_link">annotations</a> &nbsp;&nbsp; <a href="https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip">images</a>
hateful meme | <a href="https://github.com/faizanahemad/facebook-hateful-memes">images and annotations</a>
iconqa | <a href="https://iconqa.github.io/#download">images and annotation</a>
vizwiz | <a href="https://vizwiz.org/tasks-and-datasets/vqa/">images and annotation</a>
RefCOCO | <a href="https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip"> annotations </a>
RefCOCO+ | <a href="https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco+.zip"> annotations </a>
RefCOCOg | <a href="https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcocog.zip"> annotations </a>
### Evaluation dataset structure
2023-10-31 01:56:49 +00:00
### environment setup
```
export PYTHONPATH=$PYTHONPATH:/path/to/directory/of/MiniGPT-4
```
### start evalauting RefCOCO, RefCOCO+, RefCOCOg
port=port_number
cfg_path=/path/to/eval_configs/minigptv2_eval.yaml
eval_file_path=/path/to/eval/image/path
save_path=/path/to/save/path
ckpt=/path/to/evaluation/checkpoint
split=/evaluation/data/split/type # e.g. val, testA, testB, test
dataset=/data/type #refcoco, refcoco+, refcocog
```
torchrun --master-port ${port} --nproc_per_node 1 eval_ref.py \
--cfg-path ${cfg_path} --img_path ${IMG_PATH} --eval_file_path ${eval_file_path} --save_path ${save_path} \
--ckpt ${ckpt} --split ${split} --dataset ${dataset} --lora_r 64 --lora_alpha 16 \
--batch_size 10 --max_new_tokens 20 --resample
```
### start evaluating visual question answering
port=port_number
cfg_path=/path/to/eval_configs/minigptv2_eval.yaml
eval_file_path=/path/to/eval/image/path
save_path=/path/to/save/path
ckpt=/path/to/evaluation/checkpoint
split=/evaluation/data/split/type # e.g. val,test
dataset=/data/type # vqa data types: okvqa, vizwiz, iconvqa, gqa, vsr, hm
```
torchrun --master-port ${port} --nproc_per_node 1 eval_ref.py \
--cfg-path ${cfg_path} --img_path ${IMG_PATH} --eval_file_path ${eval_file_path} --save_path ${save_path} \
--ckpt ${ckpt} --split ${split} --dataset ${dataset} --lora_r 64 --lora_alpha 16 \
--batch_size 10 --max_new_tokens 20 --resample
```