MiniGPT-4/minigpt4/tasks/instruction_tuning.py

277 lines
9.4 KiB
Python
Raw Normal View History

2023-11-23 05:39:24 +00:00
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import json
import os
import torch.distributed as dist
from collections import defaultdict
from minigpt4.common.registry import registry
from minigpt4.tasks.base_task import BaseTask
import minigpt4.common.dist_utils as dist_utils
from minigpt4.common.logger import MetricLogger
from minigpt4.datasets.data_utils import prepare_sample
from minigpt4.common.dist_utils import is_dist_avail_and_initialized
from minigpt4.common.vqa_tools.vqa import VQA
from minigpt4.common.vqa_tools.vqa_eval import VQAEval
@registry.register_task("instruction_tuning")
class InstructionTask(BaseTask):
def __init__(
self,
num_beams,
max_len,
min_len,
evaluate,
num_ans_candidates,
inference_method="rank",
prompt="",
):
super().__init__()
self.num_beams = num_beams
self.max_len = max_len
self.min_len = min_len
self.evaluate = evaluate
self.inference_method = inference_method
self.num_ans_candidates = num_ans_candidates
self.prompt = prompt
self.answer_list = None
self.ques_files = defaultdict(dict)
self.anno_files = defaultdict(dict)
@classmethod
def setup_task(cls, cfg):
run_cfg = cfg.run_cfg
num_beams = run_cfg.get("num_beams", 3)
max_len = run_cfg.get("max_len", 20)
min_len = run_cfg.get("min_len", 1)
evaluate = run_cfg.get("evaluate", False)
inference_method = run_cfg.get("inference_method", "rank")
num_ans_candidates = run_cfg.get("num_ans_candidates", 128)
prompt = run_cfg.get("prompt", "")
return cls(
num_beams=num_beams,
max_len=max_len,
min_len=min_len,
evaluate=evaluate,
num_ans_candidates=num_ans_candidates,
inference_method=inference_method,
prompt=prompt,
)
def build_datasets(self, cfg):
datasets = super().build_datasets(cfg)
# get question file, annotation file and anwser list in COCO format
for dataset in datasets.values():
for split in dataset:
source = dataset[split].source
if (
hasattr(dataset[split], "coco_fmt_qust_file")
and dataset[split].coco_fmt_qust_file is not None
):
self.ques_files[split][source] = dataset[split].coco_fmt_qust_file
self.anno_files[split][source] = dataset[split].coco_fmt_anno_file
# try:
# self.answer_list = dataset[split].answer_list
# except AttributeError:
# # if answer_list is not provided, then set it to None
# pass
if len(self.ques_files) > 0:
assert len(self.ques_files) == len(
self.anno_files
), "Only support one split for evaluation."
return datasets
def valid_step(self, model, samples):
answers = model.predict_answers(
samples=samples,
answer_list=self.answer_list,
inference_method=self.inference_method,
num_beams=self.num_beams,
max_len=self.max_len,
min_len=self.min_len,
num_ans_candidates=self.num_ans_candidates,
prompt=self.prompt,
)
pred_qa_pairs = []
question_id = samples["question_id"]
question = samples["text_input"]
sources = samples["source"]
# For GQA
full_answers = samples.get("fullAnswer", ["" for i in range(len(question_id))])
gt_answers = samples.get("gt_answers", ["" for i in range(len(question_id))])
for answer, ques_id, ques, full_answer, gt_answer, source in zip(answers, question_id, question, full_answers, gt_answers, sources):
ques_id = int(ques_id.item())
pred_qa_pairs.append({
"question_id": ques_id,
"question": ques,
"full_answer": full_answer,
"answer": answer,
"gt_ans": gt_answer,
"source": source})
return pred_qa_pairs
def evaluation(self, model, data_loader, cuda_enabled=True):
metric_logger = MetricLogger(delimiter=" ")
header = "Evaluation"
# TODO make it configurable
print_freq = 10
total_results = list()
for sub_data_loader in data_loader.loaders:
results = []
ques_ids = []
for samples in metric_logger.log_every(sub_data_loader, print_freq, header):
ques_ids.extend(samples['question_id'].tolist())
samples = prepare_sample(samples, cuda_enabled=cuda_enabled)
eval_output = self.valid_step(model=model, samples=samples)
results.extend(eval_output)
total_results.append(results)
if is_dist_avail_and_initialized():
dist.barrier()
return total_results
def after_evaluation(self, val_result, split_name, **kwargs):
final_metrics = dict()
for i in range(len(val_result)):
source = val_result[i][0]["source"]
result_file = self.save_result(
val_result[i],
result_dir=registry.get_path("result_dir"),
filename=f"{split_name}_vqa_result_{source}",
remove_duplicate="question_id",
)
if source in ['vqav2','okvqa']:
try:
metrics = self._report_metrics_coco_vqa(result_file=result_file, split=split_name, source=source)
except Exception as e:
metrics = None
print(f"Report Metrics {source} Error: {e}")
elif source in ['gqa']:
try:
metrics = self._report_metrics_gqa(result_file=result_file, source=source)
except Exception as e:
metrics = None
print(f"Report Metrics {source} Error: {e}")
else:
metrics = None
final_metrics[source] = metrics
try:
agg_metrics_lst = [v["agg_metrics"] for k,v in final_metrics.items()]
final_metrics["agg_metrics"] = sum(agg_metrics_lst)/len(agg_metrics_lst)
except Exception as e:
print("Calculate agg metrics error... ", e)
final_metrics = None
return final_metrics
@dist_utils.main_process
def _report_metrics_coco_vqa(self, result_file, split, source='vqav2'):
"""
Use official VQA evaluation script to report metrics.
"""
metrics = {}
if split in self.ques_files and split in self.anno_files:
vqa = VQA(self.anno_files[split][source], self.ques_files[split][source])
vqa_result = vqa.loadRes(
resFile=result_file, quesFile=self.ques_files[split][source]
)
# create vqaEval object by taking vqa and vqaRes
# n is precision of accuracy (number of places after decimal), default is 2
vqa_scorer = VQAEval(vqa, vqa_result, n=2)
logging.info("Start VQA evaluation.")
vqa_scorer.evaluate()
# print accuracies
overall_acc = vqa_scorer.accuracy["overall"]
metrics["agg_metrics"] = overall_acc
logging.info("Overall Accuracy is: %.02f\n" % overall_acc)
logging.info("Per Answer Type Accuracy is the following:")
for ans_type in vqa_scorer.accuracy["perAnswerType"]:
logging.info(
"%s : %.02f"
% (ans_type, vqa_scorer.accuracy["perAnswerType"][ans_type])
)
metrics[ans_type] = vqa_scorer.accuracy["perAnswerType"][ans_type]
with open(
os.path.join(registry.get_path("output_dir"), f"evaluate_{source}.txt"), "a"
) as f:
f.write(json.dumps(metrics) + "\n")
return metrics
@dist_utils.main_process
def _report_metrics_gqa(self, result_file, source='gqa'):
"""
Validation of GQA/VQAv2
"""
# measuring accuracy compared to answer
results = json.load(open(result_file, "r"))
acc = []
vqa_tool = VQAEval()
for res in results:
# if res["gt_ans"] is None:
# prepare test results for leaderboard evaluation
# self._save_result_leaderboard(results)
# return
gt_ans = res["gt_ans"]
pred = res["answer"]
# if self.inference_method == "generate":
pred = vqa_tool.processPunctuation(pred)
pred = vqa_tool.processDigitArticle(pred)
# vqa_acc = 1 if pred == gt_ans else 0
vqa_acc = 1 if gt_ans in pred else 0
acc.append(vqa_acc)
accuracy = sum(acc) / len(acc) * 100
metrics = {"agg_metrics": accuracy, "acc": accuracy}
with open(
os.path.join(registry.get_path("output_dir"), f"evaluate_{source}.txt"), "a"
) as f:
f.write(json.dumps(metrics) + "\n")
logging.info(metrics)
return metrics