mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-04 18:10:47 +00:00
remove files
This commit is contained in:
parent
ef1ac08ce3
commit
062ad9bb30
@ -5,7 +5,8 @@ model:
|
||||
end_sym: "###"
|
||||
low_resource: True
|
||||
prompt_template: '###Human: {} ###Assistant: '
|
||||
ckpt: '/path/to/checkpoint/'
|
||||
ckpt: '/home/zhud/weights/minigpt4/prerained_minigpt4_7b.pth'
|
||||
llama_model: "/home/zhud/weights/vicuna-7b"
|
||||
|
||||
|
||||
datasets:
|
||||
|
@ -5,7 +5,8 @@ model:
|
||||
end_sym: "</s>"
|
||||
low_resource: True
|
||||
prompt_template: '[INST] {} [/INST] '
|
||||
ckpt: '/path/to/checkpoint/'
|
||||
ckpt: '/home/zhud/weights/minigpt4/pretrained_minigpt4_llama2_7b.pth'
|
||||
llama_model: "/ibex/project/c2133/llama_v2/llama-2-7b-chat-pytorch_update"
|
||||
|
||||
|
||||
datasets:
|
||||
|
@ -11,7 +11,6 @@ from omegaconf import OmegaConf
|
||||
|
||||
from minigpt4.common.registry import registry
|
||||
from minigpt4.models.base_model import BaseModel
|
||||
from minigpt4.models.blip2 import Blip2Base
|
||||
from minigpt4.models.mini_gpt4 import MiniGPT4
|
||||
from minigpt4.processors.base_processor import BaseProcessor
|
||||
|
||||
@ -19,7 +18,6 @@ from minigpt4.processors.base_processor import BaseProcessor
|
||||
__all__ = [
|
||||
"load_model",
|
||||
"BaseModel",
|
||||
"Blip2Base",
|
||||
"MiniGPT4",
|
||||
]
|
||||
|
||||
|
@ -5,14 +5,18 @@
|
||||
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
"""
|
||||
|
||||
import contextlib
|
||||
import logging
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers import BertTokenizer
|
||||
from minigpt4.common.dist_utils import download_cached_file, is_dist_avail_and_initialized
|
||||
from minigpt4.common.utils import get_abs_path, is_url
|
||||
from minigpt4.models.Qformer import BertConfig, BertLMHeadModel
|
||||
from minigpt4.models.eva_vit import create_eva_vit_g
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
|
||||
@ -117,6 +121,70 @@ class BaseModel(nn.Module):
|
||||
else:
|
||||
return tot
|
||||
|
||||
@classmethod
|
||||
def init_tokenizer(cls):
|
||||
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
||||
tokenizer.add_special_tokens({"bos_token": "[DEC]"})
|
||||
return tokenizer
|
||||
|
||||
def maybe_autocast(self, dtype=torch.float16):
|
||||
# if on cpu, don't use autocast
|
||||
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16
|
||||
enable_autocast = self.device != torch.device("cpu")
|
||||
|
||||
if enable_autocast:
|
||||
return torch.cuda.amp.autocast(dtype=dtype)
|
||||
else:
|
||||
return contextlib.nullcontext()
|
||||
|
||||
@classmethod
|
||||
def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2):
|
||||
encoder_config = BertConfig.from_pretrained("bert-base-uncased")
|
||||
encoder_config.encoder_width = vision_width
|
||||
# insert cross-attention layer every other block
|
||||
encoder_config.add_cross_attention = True
|
||||
encoder_config.cross_attention_freq = cross_attention_freq
|
||||
encoder_config.query_length = num_query_token
|
||||
Qformer = BertLMHeadModel(config=encoder_config)
|
||||
query_tokens = nn.Parameter(
|
||||
torch.zeros(1, num_query_token, encoder_config.hidden_size)
|
||||
)
|
||||
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
|
||||
return Qformer, query_tokens
|
||||
|
||||
@classmethod
|
||||
def init_vision_encoder(
|
||||
cls, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision
|
||||
):
|
||||
assert model_name == "eva_clip_g", "vit model must be eva_clip_g for current version of MiniGPT-4"
|
||||
visual_encoder = create_eva_vit_g(
|
||||
img_size, drop_path_rate, use_grad_checkpoint, precision
|
||||
)
|
||||
|
||||
ln_vision = LayerNorm(visual_encoder.num_features)
|
||||
return visual_encoder, ln_vision
|
||||
|
||||
def load_from_pretrained(self, url_or_filename):
|
||||
if is_url(url_or_filename):
|
||||
cached_file = download_cached_file(
|
||||
url_or_filename, check_hash=False, progress=True
|
||||
)
|
||||
checkpoint = torch.load(cached_file, map_location="cpu")
|
||||
elif os.path.isfile(url_or_filename):
|
||||
checkpoint = torch.load(url_or_filename, map_location="cpu")
|
||||
else:
|
||||
raise RuntimeError("checkpoint url or path is invalid")
|
||||
|
||||
state_dict = checkpoint["model"]
|
||||
|
||||
msg = self.load_state_dict(state_dict, strict=False)
|
||||
|
||||
# logging.info("Missing keys {}".format(msg.missing_keys))
|
||||
logging.info("load checkpoint from %s" % url_or_filename)
|
||||
|
||||
return msg
|
||||
|
||||
|
||||
|
||||
class BaseEncoder(nn.Module):
|
||||
"""
|
||||
@ -245,3 +313,23 @@ def tile(x, dim, n_tile):
|
||||
np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)])
|
||||
)
|
||||
return torch.index_select(x, dim, order_index.to(x.device))
|
||||
|
||||
|
||||
def disabled_train(self, mode=True):
|
||||
"""Overwrite model.train with this function to make sure train/eval mode
|
||||
does not change anymore."""
|
||||
return self
|
||||
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
"""Subclass torch's LayerNorm to handle fp16."""
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
orig_type = x.dtype
|
||||
ret = super().forward(x.type(torch.float32))
|
||||
return ret.type(orig_type)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,221 +0,0 @@
|
||||
"""
|
||||
Copyright (c) 2023, salesforce.com, inc.
|
||||
All rights reserved.
|
||||
SPDX-License-Identifier: BSD-3-Clause
|
||||
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
"""
|
||||
import contextlib
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
import datetime
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.distributed as dist
|
||||
import torch.nn.functional as F
|
||||
|
||||
import minigpt4.common.dist_utils as dist_utils
|
||||
from minigpt4.common.dist_utils import download_cached_file
|
||||
from minigpt4.common.utils import is_url
|
||||
from minigpt4.common.logger import MetricLogger
|
||||
from minigpt4.models.base_model import BaseModel
|
||||
from minigpt4.models.Qformer import BertConfig, BertLMHeadModel
|
||||
from minigpt4.models.eva_vit import create_eva_vit_g
|
||||
from transformers import BertTokenizer
|
||||
|
||||
|
||||
class Blip2Base(BaseModel):
|
||||
@classmethod
|
||||
def init_tokenizer(cls):
|
||||
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
||||
tokenizer.add_special_tokens({"bos_token": "[DEC]"})
|
||||
return tokenizer
|
||||
|
||||
def maybe_autocast(self, dtype=torch.float16):
|
||||
# if on cpu, don't use autocast
|
||||
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16
|
||||
enable_autocast = self.device != torch.device("cpu")
|
||||
|
||||
if enable_autocast:
|
||||
return torch.cuda.amp.autocast(dtype=dtype)
|
||||
else:
|
||||
return contextlib.nullcontext()
|
||||
|
||||
@classmethod
|
||||
def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2):
|
||||
encoder_config = BertConfig.from_pretrained("bert-base-uncased")
|
||||
encoder_config.encoder_width = vision_width
|
||||
# insert cross-attention layer every other block
|
||||
encoder_config.add_cross_attention = True
|
||||
encoder_config.cross_attention_freq = cross_attention_freq
|
||||
encoder_config.query_length = num_query_token
|
||||
Qformer = BertLMHeadModel(config=encoder_config)
|
||||
query_tokens = nn.Parameter(
|
||||
torch.zeros(1, num_query_token, encoder_config.hidden_size)
|
||||
)
|
||||
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
|
||||
return Qformer, query_tokens
|
||||
|
||||
@classmethod
|
||||
def init_vision_encoder(
|
||||
cls, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision
|
||||
):
|
||||
assert model_name == "eva_clip_g", "vit model must be eva_clip_g for current version of MiniGPT-4"
|
||||
visual_encoder = create_eva_vit_g(
|
||||
img_size, drop_path_rate, use_grad_checkpoint, precision
|
||||
)
|
||||
|
||||
ln_vision = LayerNorm(visual_encoder.num_features)
|
||||
return visual_encoder, ln_vision
|
||||
|
||||
def load_from_pretrained(self, url_or_filename):
|
||||
if is_url(url_or_filename):
|
||||
cached_file = download_cached_file(
|
||||
url_or_filename, check_hash=False, progress=True
|
||||
)
|
||||
checkpoint = torch.load(cached_file, map_location="cpu")
|
||||
elif os.path.isfile(url_or_filename):
|
||||
checkpoint = torch.load(url_or_filename, map_location="cpu")
|
||||
else:
|
||||
raise RuntimeError("checkpoint url or path is invalid")
|
||||
|
||||
state_dict = checkpoint["model"]
|
||||
|
||||
msg = self.load_state_dict(state_dict, strict=False)
|
||||
|
||||
# logging.info("Missing keys {}".format(msg.missing_keys))
|
||||
logging.info("load checkpoint from %s" % url_or_filename)
|
||||
|
||||
return msg
|
||||
|
||||
|
||||
def disabled_train(self, mode=True):
|
||||
"""Overwrite model.train with this function to make sure train/eval mode
|
||||
does not change anymore."""
|
||||
return self
|
||||
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
"""Subclass torch's LayerNorm to handle fp16."""
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
orig_type = x.dtype
|
||||
ret = super().forward(x.type(torch.float32))
|
||||
return ret.type(orig_type)
|
||||
|
||||
|
||||
def compute_sim_matrix(model, data_loader, **kwargs):
|
||||
k_test = kwargs.pop("k_test")
|
||||
|
||||
metric_logger = MetricLogger(delimiter=" ")
|
||||
header = "Evaluation:"
|
||||
|
||||
logging.info("Computing features for evaluation...")
|
||||
start_time = time.time()
|
||||
|
||||
texts = data_loader.dataset.text
|
||||
num_text = len(texts)
|
||||
text_bs = 256
|
||||
text_ids = []
|
||||
text_embeds = []
|
||||
text_atts = []
|
||||
for i in range(0, num_text, text_bs):
|
||||
text = texts[i : min(num_text, i + text_bs)]
|
||||
text_input = model.tokenizer(
|
||||
text,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=35,
|
||||
return_tensors="pt",
|
||||
).to(model.device)
|
||||
text_feat = model.forward_text(text_input)
|
||||
text_embed = F.normalize(model.text_proj(text_feat))
|
||||
text_embeds.append(text_embed)
|
||||
text_ids.append(text_input.input_ids)
|
||||
text_atts.append(text_input.attention_mask)
|
||||
|
||||
text_embeds = torch.cat(text_embeds, dim=0)
|
||||
text_ids = torch.cat(text_ids, dim=0)
|
||||
text_atts = torch.cat(text_atts, dim=0)
|
||||
|
||||
vit_feats = []
|
||||
image_embeds = []
|
||||
for samples in data_loader:
|
||||
image = samples["image"]
|
||||
|
||||
image = image.to(model.device)
|
||||
image_feat, vit_feat = model.forward_image(image)
|
||||
image_embed = model.vision_proj(image_feat)
|
||||
image_embed = F.normalize(image_embed, dim=-1)
|
||||
|
||||
vit_feats.append(vit_feat.cpu())
|
||||
image_embeds.append(image_embed)
|
||||
|
||||
vit_feats = torch.cat(vit_feats, dim=0)
|
||||
image_embeds = torch.cat(image_embeds, dim=0)
|
||||
|
||||
sims_matrix = []
|
||||
for image_embed in image_embeds:
|
||||
sim_q2t = image_embed @ text_embeds.t()
|
||||
sim_i2t, _ = sim_q2t.max(0)
|
||||
sims_matrix.append(sim_i2t)
|
||||
sims_matrix = torch.stack(sims_matrix, dim=0)
|
||||
|
||||
score_matrix_i2t = torch.full(
|
||||
(len(data_loader.dataset.image), len(texts)), -100.0
|
||||
).to(model.device)
|
||||
|
||||
num_tasks = dist_utils.get_world_size()
|
||||
rank = dist_utils.get_rank()
|
||||
step = sims_matrix.size(0) // num_tasks + 1
|
||||
start = rank * step
|
||||
end = min(sims_matrix.size(0), start + step)
|
||||
|
||||
for i, sims in enumerate(
|
||||
metric_logger.log_every(sims_matrix[start:end], 50, header)
|
||||
):
|
||||
topk_sim, topk_idx = sims.topk(k=k_test, dim=0)
|
||||
image_inputs = vit_feats[start + i].repeat(k_test, 1, 1).to(model.device)
|
||||
score = model.compute_itm(
|
||||
image_inputs=image_inputs,
|
||||
text_ids=text_ids[topk_idx],
|
||||
text_atts=text_atts[topk_idx],
|
||||
).float()
|
||||
score_matrix_i2t[start + i, topk_idx] = score + topk_sim
|
||||
|
||||
sims_matrix = sims_matrix.t()
|
||||
score_matrix_t2i = torch.full(
|
||||
(len(texts), len(data_loader.dataset.image)), -100.0
|
||||
).to(model.device)
|
||||
|
||||
step = sims_matrix.size(0) // num_tasks + 1
|
||||
start = rank * step
|
||||
end = min(sims_matrix.size(0), start + step)
|
||||
|
||||
for i, sims in enumerate(
|
||||
metric_logger.log_every(sims_matrix[start:end], 50, header)
|
||||
):
|
||||
topk_sim, topk_idx = sims.topk(k=k_test, dim=0)
|
||||
image_inputs = vit_feats[topk_idx.cpu()].to(model.device)
|
||||
score = model.compute_itm(
|
||||
image_inputs=image_inputs,
|
||||
text_ids=text_ids[start + i].repeat(k_test, 1),
|
||||
text_atts=text_atts[start + i].repeat(k_test, 1),
|
||||
).float()
|
||||
score_matrix_t2i[start + i, topk_idx] = score + topk_sim
|
||||
|
||||
if dist_utils.is_dist_avail_and_initialized():
|
||||
dist.barrier()
|
||||
torch.distributed.all_reduce(
|
||||
score_matrix_i2t, op=torch.distributed.ReduceOp.SUM
|
||||
)
|
||||
torch.distributed.all_reduce(
|
||||
score_matrix_t2i, op=torch.distributed.ReduceOp.SUM
|
||||
)
|
||||
|
||||
total_time = time.time() - start_time
|
||||
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
||||
logging.info("Evaluation time {}".format(total_time_str))
|
||||
|
||||
return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy()
|
@ -1,110 +0,0 @@
|
||||
"""
|
||||
Copyright (c) 2022, salesforce.com, inc.
|
||||
All rights reserved.
|
||||
SPDX-License-Identifier: BSD-3-Clause
|
||||
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
"""
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from transformers.modeling_outputs import (
|
||||
ModelOutput,
|
||||
BaseModelOutputWithPoolingAndCrossAttentions,
|
||||
CausalLMOutputWithCrossAttentions,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class BlipSimilarity(ModelOutput):
|
||||
sim_i2t: torch.FloatTensor = None
|
||||
sim_t2i: torch.FloatTensor = None
|
||||
|
||||
sim_i2t_m: Optional[torch.FloatTensor] = None
|
||||
sim_t2i_m: Optional[torch.FloatTensor] = None
|
||||
|
||||
sim_i2t_targets: Optional[torch.FloatTensor] = None
|
||||
sim_t2i_targets: Optional[torch.FloatTensor] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class BlipIntermediateOutput(ModelOutput):
|
||||
"""
|
||||
Data class for intermediate outputs of BLIP models.
|
||||
|
||||
image_embeds (torch.FloatTensor): Image embeddings, shape (batch_size, num_patches, embed_dim).
|
||||
text_embeds (torch.FloatTensor): Text embeddings, shape (batch_size, seq_len, embed_dim).
|
||||
|
||||
image_embeds_m (torch.FloatTensor): Image embeddings from momentum visual encoder, shape (batch_size, num_patches, embed_dim).
|
||||
text_embeds_m (torch.FloatTensor): Text embeddings from momentum text encoder, shape (batch_size, seq_len, embed_dim).
|
||||
|
||||
encoder_output (BaseModelOutputWithPoolingAndCrossAttentions): output from the image-grounded text encoder.
|
||||
encoder_output_neg (BaseModelOutputWithPoolingAndCrossAttentions): output from the image-grounded text encoder for negative pairs.
|
||||
|
||||
decoder_output (CausalLMOutputWithCrossAttentions): output from the image-grounded text decoder.
|
||||
decoder_labels (torch.LongTensor): labels for the captioning loss.
|
||||
|
||||
itm_logits (torch.FloatTensor): logits for the image-text matching loss, shape (batch_size * 3, 2).
|
||||
itm_labels (torch.LongTensor): labels for the image-text matching loss, shape (batch_size * 3,)
|
||||
|
||||
"""
|
||||
|
||||
# uni-modal features
|
||||
image_embeds: torch.FloatTensor = None
|
||||
text_embeds: Optional[torch.FloatTensor] = None
|
||||
|
||||
image_embeds_m: Optional[torch.FloatTensor] = None
|
||||
text_embeds_m: Optional[torch.FloatTensor] = None
|
||||
|
||||
# intermediate outputs of multimodal encoder
|
||||
encoder_output: Optional[BaseModelOutputWithPoolingAndCrossAttentions] = None
|
||||
encoder_output_neg: Optional[BaseModelOutputWithPoolingAndCrossAttentions] = None
|
||||
|
||||
itm_logits: Optional[torch.FloatTensor] = None
|
||||
itm_labels: Optional[torch.LongTensor] = None
|
||||
|
||||
# intermediate outputs of multimodal decoder
|
||||
decoder_output: Optional[CausalLMOutputWithCrossAttentions] = None
|
||||
decoder_labels: Optional[torch.LongTensor] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class BlipOutput(ModelOutput):
|
||||
# some finetuned models (e.g. BlipVQA) do not compute similarity, thus optional.
|
||||
sims: Optional[BlipSimilarity] = None
|
||||
|
||||
intermediate_output: BlipIntermediateOutput = None
|
||||
|
||||
loss: Optional[torch.FloatTensor] = None
|
||||
|
||||
loss_itc: Optional[torch.FloatTensor] = None
|
||||
|
||||
loss_itm: Optional[torch.FloatTensor] = None
|
||||
|
||||
loss_lm: Optional[torch.FloatTensor] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class BlipOutputFeatures(ModelOutput):
|
||||
"""
|
||||
Data class of features from BlipFeatureExtractor.
|
||||
|
||||
Args:
|
||||
image_embeds: (torch.FloatTensor) of shape (batch_size, num_patches+1, embed_dim), optional
|
||||
image_features: (torch.FloatTensor) of shape (batch_size, num_patches+1, feature_dim), optional
|
||||
text_embeds: (torch.FloatTensor) of shape (batch_size, sequence_length+1, embed_dim), optional
|
||||
text_features: (torch.FloatTensor) of shape (batch_size, sequence_length+1, feature_dim), optional
|
||||
|
||||
The first embedding or feature is for the [CLS] token.
|
||||
|
||||
Features are obtained by projecting the corresponding embedding into a normalized low-dimensional space.
|
||||
"""
|
||||
|
||||
image_embeds: Optional[torch.FloatTensor] = None
|
||||
image_embeds_proj: Optional[torch.FloatTensor] = None
|
||||
|
||||
text_embeds: Optional[torch.FloatTensor] = None
|
||||
text_embeds_proj: Optional[torch.FloatTensor] = None
|
||||
|
||||
multimodal_embeds: Optional[torch.FloatTensor] = None
|
@ -6,7 +6,7 @@ from torch.cuda.amp import autocast as autocast
|
||||
import torch.nn as nn
|
||||
|
||||
from minigpt4.common.registry import registry
|
||||
from minigpt4.models.blip2 import Blip2Base, disabled_train
|
||||
from minigpt4.models.base_model import BaseModel, disabled_train
|
||||
from transformers.models.llama.modeling_llama import LlamaForCausalLM
|
||||
from transformers import LlamaTokenizer
|
||||
|
||||
@ -20,9 +20,9 @@ from peft import (
|
||||
|
||||
|
||||
@registry.register_model("mini_gpt4")
|
||||
class MiniGPT4(Blip2Base):
|
||||
class MiniGPT4(BaseModel):
|
||||
"""
|
||||
BLIP2 GPT-LLAMA model.
|
||||
MiniGPT-4 model
|
||||
"""
|
||||
|
||||
PRETRAINED_MODEL_CONFIG_DICT = {
|
||||
|
Loading…
Reference in New Issue
Block a user