mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-05 02:20:47 +00:00
add datasets
This commit is contained in:
parent
86908b6314
commit
1d0c37d924
@ -6,6 +6,7 @@ Download the dataset
|
||||
Image source | Download path
|
||||
--- | :---:
|
||||
COCO 2014 images | <a href="http://images.cocodataset.org/zips/train2014.zip">images</a> <a href="https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_train.json"> captions</a>
|
||||
COCO VQA | <a href="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/datasets/vqav2/vqa_train.json">vqa train</a> <a href="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/datasets/vqav2/vqa_val.json"> vqa val</a>
|
||||
Visual Genome | <a href="https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip">images part1</a> <a href="https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip">images part2</a>
|
||||
TextCaps | <a href="https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip">images</a> <a href="https://dl.fbaipublicfiles.com/textvqa/data/textcaps/TextCaps_0.1_train.json"> annotations</a>
|
||||
RefCOCO | <a href="https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip"> annotations </a>
|
||||
@ -16,8 +17,14 @@ OKVQA | <a href="https://storage.googleapis.com/sfr-vision-language-research/LAV
|
||||
AOK-VQA | <a href="https://prior-datasets.s3.us-east-2.amazonaws.com/aokvqa/aokvqa_v1p0.tar.gz"> annotations </a>
|
||||
OCR-VQA | <a href="https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing"> annotations </a>
|
||||
Filtered Flickr-30k | <a href="https://drive.google.com/drive/folders/19c_ggBI77AvdtYlPbuI0ZpnPz73T5teX?usp=sharing"> annotations </a>
|
||||
Multi-task conversation | <a href="https://drive.google.com/file/d/11HHqB2c29hbSk-WLxdta-nG8UCUrcCN1/view?usp=sharing"> annotations </a>
|
||||
Filtered unnatural instruction | <a href="https://drive.google.com/file/d/1lXNnBcb5WU-sc8Fe2T2N8J0NRw4sBLev/view?usp=sharing"> annotations </a>
|
||||
Multi-task conversation | <a href="https://drive.google.com/file/d/11HHqB2c29hbSk-WLxdta-nG8UCUrcCN1/view?usp=sharing"> annotations </a>
|
||||
Filtered unnatural instruction | <a href="https://drive.google.com/file/d/1lXNnBcb5WU-sc8Fe2T2N8J0NRw4sBLev/view?usp=sharing"> annotations </a>
|
||||
|
||||
|
||||
|
||||
### COCO captions
|
||||
Download the COCO 2014 images and captions
|
||||
|
||||
|
||||
```
|
||||
├── ${MINIGPTv2_DATASET}
|
||||
@ -28,55 +35,79 @@ Filtered unnatural instruction | <a href="https://drive.google.com/file/d/1lXN
|
||||
|
||||
```
|
||||
|
||||
Set **image_path** to the COCO 2014 image folder.
|
||||
Similarly, set **ann_path** to the coco_karpathy_train.json path
|
||||
- [minigpt4/configs/datasets/coco/caption.yaml](../minigpt4/configs/datasets/coco/caption.yaml)
|
||||
|
||||
### COCO VQA
|
||||
Download the vqa v2 train and validation json files
|
||||
|
||||
### COCO captions
|
||||
|
||||
|
||||
|
||||
Download the COCO 2014 images
|
||||
- [train2014](http://images.cocodataset.org/zips/train2014.zip)
|
||||
|
||||
```
|
||||
├── ${MINIGPTv2_DATASET}
|
||||
│ ├── vqav2
|
||||
│ ├── vqa_train.json
|
||||
| ├── vqa_val.json
|
||||
```
|
||||
|
||||
Set **image_path** to the COCO 2014 image folder.
|
||||
Similarly, set **ann_path** to the vqa_train.json and vqa_val.json path
|
||||
- [minigpt4/configs/datasets/coco/defaults_vqa.yaml](../minigpt4/configs/datasets/coco/defaults_vqa.yaml)
|
||||
|
||||
|
||||
### Visual genome
|
||||
Download visiual genome images and annotation files
|
||||
|
||||
```
|
||||
├── ${MINIGPTv2_DATASET}
|
||||
│ ├── visual_genome
|
||||
│ ├── VG_100K
|
||||
│ ├── VG_100K_2
|
||||
| ├── region_descriptions.json
|
||||
```
|
||||
|
||||
Set **image_path** to visual_genome folder.
|
||||
Similarly, set **ann_path** to to visual_genome folder.
|
||||
|
||||
- [minigpt4/configs/datasets/vg/ref.yaml](../minigpt4/configs/datasets/vg/ref.yaml)
|
||||
|
||||
- [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
|
||||
|
||||
### TextCaps
|
||||
Download the TextCaps images and annotation files
|
||||
|
||||
- [TextCaps_0.1_train](https://dl.fbaipublicfiles.com/textvqa/data/textcaps/TextCaps_0.1_train.json)
|
||||
- [Images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
|
||||
```
|
||||
├── ${MINIGPTv2_DATASET}
|
||||
│ ├── TextCaps
|
||||
│ ├── train_images
|
||||
│ ├── TextCaps_0.1_train.json
|
||||
```
|
||||
|
||||
Set **image_path** to TextCaps train_images folder.
|
||||
Similarly, set **ann_path** to the TextCaps_0.1_train.json path
|
||||
|
||||
- [minigpt4/configs/datasets/textcaps/caption.yaml](../minigpt4/configs/datasets/textcaps/caption.yaml)
|
||||
|
||||
### RefCOCO, RefCOCO+, RefCOCOg
|
||||
Make sure you have the COCO 2014 images first.
|
||||
|
||||
Then,
|
||||
download RefCOCO, RefCOCO+, and RefCOCOg annotation files in the following links.
|
||||
|
||||
- https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip
|
||||
- https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco+.zip
|
||||
- https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcocog.zip
|
||||
|
||||
Unzip these files to the location you like. It should have the structure like the following
|
||||
Download the RefCOCO, RefCOCO+, RefCOCOg annotation files
|
||||
|
||||
```
|
||||
Location_you_like
|
||||
├── refcoco
|
||||
│ ├── instances.json
|
||||
│ ├── refs(google).p
|
||||
│ └── refs(unc).p
|
||||
├── refcoco+
|
||||
│ ├── instances.json
|
||||
│ └── refs(unc).p
|
||||
└── refcocog
|
||||
├── instances.json
|
||||
├── refs(google).p
|
||||
└── refs(umd).p
|
||||
├── ${MINIGPTv2_DATASET}
|
||||
│ ├── refcoco_annotations
|
||||
│ ├── refcoco
|
||||
| ├── instances.json
|
||||
| ├── refs(google).p
|
||||
| ├── refs(unc).p
|
||||
│ ├── refcoco+
|
||||
| ├── instances.json
|
||||
| ├── refs(unc).p
|
||||
│ ├── refcocog
|
||||
| ├── instances.json
|
||||
| ├── refs(google).p
|
||||
| ├── refs(und).p
|
||||
```
|
||||
|
||||
Set **image_path** in all the following dataset configuration files to the COCO 2014 image folder.
|
||||
|
||||
Set **image_path** to the COCO 2014 image folder.
|
||||
Similarly, set **ann_path** in all the following configs to the above folder (Location_you_like) that contains refcoco, refcoco+, and refcocog.
|
||||
|
||||
- [minigpt4/configs/datasets/coco_bbox/refcoco.yaml](../minigpt4/configs/datasets/coco_bbox/refcoco.yaml)
|
||||
@ -86,16 +117,19 @@ Similarly, set **ann_path** in all the following configs to the above folder (Lo
|
||||
- [minigpt4/configs/datasets/coco_bbox/invrefcocog.yaml](../minigpt4/configs/datasets/coco_bbox/invrefcocog.yaml)
|
||||
- [minigpt4/configs/datasets/coco_bbox/invrefcocop.yaml](../minigpt4/configs/datasets/coco_bbox/invrefcocop.yaml)
|
||||
|
||||
|
||||
### LLaVA
|
||||
Makesure you have the COCO 2014 images first.
|
||||
|
||||
Download Llava annotation files in the following link to the place you like.
|
||||
```
|
||||
Location_you_like
|
||||
├── ${MINIGPTv2_DATASET}
|
||||
│ ├── llava
|
||||
│ ├── conversation_58k.json
|
||||
│ ├── detail_23k.json
|
||||
│ ├── complex_reasoning_77k.json
|
||||
```
|
||||
|
||||
- https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/conversation_58k.json
|
||||
- https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/detail_23k.json
|
||||
- https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/complex_reasoning_77k.json
|
||||
|
||||
Set **image_path** in all the following dataset configuration files to the COCO 2014 image folder.
|
||||
Set **image_path** to the COCO 2014 image folder.
|
||||
Similarly, set **ann_path** to the location of the previous downloaded conversation_58k.json,
|
||||
detail_23k.json, and complex_reasoning_77k.json in conversation.yaml, detail.yaml, and reason.yaml, respectively.
|
||||
|
||||
@ -105,18 +139,29 @@ detail_23k.json, and complex_reasoning_77k.json in conversation.yaml, detail.yam
|
||||
- [minigpt4/configs/datasets/llava/reason.yaml](../minigpt4/configs/datasets/llava/reason.yaml)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
### OKVQA
|
||||
|
||||
|
||||
```
|
||||
Location_you_like
|
||||
├── ${MINIGPTv2_DATASET}
|
||||
│ ├── OKVQA
|
||||
│ ├── okvqa_train.json
|
||||
```
|
||||
|
||||
Set **image_path** to the COCO 2014 image folder.
|
||||
Similarly, set **ann_path** to the location of the OKVQA dataset
|
||||
- [minigpt4/configs/datasets/okvqa/defaults.yaml](../minigpt4/configs/datasets/okvqa/defaults.yaml)
|
||||
|
||||
|
||||
### COCO-VQA
|
||||
|
||||
- [OK-VQA Input Questions](https://okvqa.allenai.org/static/data/OpenEnded_mscoco_train2014_questions.json.zip)
|
||||
- [OK-VQA Annotations](https://okvqa.allenai.org/static/data/mscoco_train2014_annotations.json.zip)
|
||||
|
||||
- [okvqa_train](https://storage.googleapis.com/sfr-vision-language-research/LAVIS/datasets/okvqa/okvqa_train.json)
|
||||
- Images are from COCO
|
||||
|
||||
### AOK-VQA
|
||||
Download the AOK-VQA annotation dataset
|
||||
|
||||
```
|
||||
export AOKVQA_DIR=YOUR_DATASET_PATH
|
||||
@ -124,12 +169,85 @@ mkdir -p ${AOKVQA_DIR}
|
||||
curl -fsSL https://prior-datasets.s3.us-east-2.amazonaws.com/aokvqa/aokvqa_v1p0.tar.gz | tar xvz -C ${AOKVQA_DIR}
|
||||
```
|
||||
|
||||
```
|
||||
Location_you_like
|
||||
├── ${MINIGPTv2_DATASET}
|
||||
│ ├── AOKVQA
|
||||
│ ├── aokvqa_v1p0_train.json
|
||||
```
|
||||
|
||||
|
||||
Set **image_path** to the COCO 2014 image folder.
|
||||
Similarly, set **ann_path** to the location of the AOKVQA dataset
|
||||
- [minigpt4/configs/datasets/aokvqa/defaults.yaml](../minigpt4/configs/datasets/aokvqa/defaults.yaml)
|
||||
|
||||
|
||||
|
||||
### OCR-VQA
|
||||
- [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing), **we save all files as `.jpg`**
|
||||
Download the OCR-VQA annotation files
|
||||
|
||||
```
|
||||
Location_you_like
|
||||
├── ${MINIGPTv2_DATASET}
|
||||
│ ├── OCR-VQA
|
||||
│ ├── images
|
||||
│ ├── dataset.json
|
||||
```
|
||||
|
||||
Set **image_path** as the OCR-VQA image folder.
|
||||
Similarly, set **ann_path** to the lhe OCR-VQA dataset.json
|
||||
- [minigpt4/configs/datasets/ocrvqa/ocrvqa.yaml](../minigpt4/configs/datasets/ocrvqa/ocrvqa.yaml)
|
||||
|
||||
|
||||
|
||||
### filtered Flickr-30k
|
||||
Download filtered Flickr-30k images and annotation files
|
||||
|
||||
```
|
||||
Location_you_like
|
||||
├── ${MINIGPTv2_DATASET}
|
||||
│ ├── filtered_flickr
|
||||
│ ├── images
|
||||
│ ├── captiontobbox.json
|
||||
│ ├── groundedcaption.json
|
||||
│ ├── phrasetobbox.json
|
||||
```
|
||||
|
||||
Set **image_path** as the flickr-30k images foler.
|
||||
Similarly, set **ann_path** to the groundedcaption.json, captiontobbox.json and phrasetobbox.json for the
|
||||
grounded image caption, caption to bbox, and phrase to bbox datasets.
|
||||
|
||||
- [minigpt4/configs/datasets/flickr/default.yaml](../minigpt4/configs/datasets/flickr/default.yaml)
|
||||
- [minigpt4/configs/datasets/flickr/caption_to_phrase.yaml](../minigpt4/configs/datasets/flickr/caption_to_phrase.yaml)
|
||||
- [minigpt4/configs/datasets/flickr/object_to_phrase.yaml](../minigpt4/configs/datasets/flickr/object_to_phrase.yaml)
|
||||
|
||||
|
||||
### Multi-task conversation
|
||||
Download the multi-task converstation dataset
|
||||
|
||||
```
|
||||
Location_you_like
|
||||
├── ${MINIGPTv2_DATASET}
|
||||
│ ├── multitask_conversation
|
||||
│ ├── multitask_conversation.json
|
||||
```
|
||||
|
||||
Set **image_path** as the COCO 2014 images folder.
|
||||
Similarly, set **ann_path** to the multitask_conversation.json file path
|
||||
|
||||
- [minigpt4/configs/datasets/multitask_conversation/default.yaml](../minigpt4/configs/datasets/multitask_conversation/default.yaml)
|
||||
|
||||
### Unnatural instruction
|
||||
Download the filtered unnatural instruction annotation files (we remove the very long sentences from the original unnatural instruction dataset)
|
||||
|
||||
```
|
||||
Location_you_like
|
||||
├── ${MINIGPTv2_DATASET}
|
||||
│ ├── unnatural-instructions
|
||||
│ ├── filtered_unnatural_instruction.json
|
||||
```
|
||||
|
||||
There is no image path.
|
||||
Similarly, set **ann_path** to the filtered_unnatural_instruction.json file path
|
||||
|
||||
- [minigpt4/configs/datasets/nlp/unnatural_instruction.yaml](../minigpt4/configs/datasets/nlp/unnatural_instruction.yaml)
|
Loading…
Reference in New Issue
Block a user