mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-05 02:20:47 +00:00
update evaluation code
This commit is contained in:
parent
68f42c0570
commit
226cb38bcf
@ -3,10 +3,10 @@ model:
|
|||||||
model_type: pretrain
|
model_type: pretrain
|
||||||
max_txt_len: 500
|
max_txt_len: 500
|
||||||
end_sym: "</s>"
|
end_sym: "</s>"
|
||||||
low_resource: True
|
low_resource: False
|
||||||
prompt_template: '[INST] {} [/INST]'
|
prompt_template: '[INST] {} [/INST]'
|
||||||
llama_model: "/ibex/project/c2133/llama_v2/llama-2-7b-chat-pytorch_update"
|
llama_model: "/ibex/project/c2133/llama_v2/llama-2-7b-chat-pytorch_update"
|
||||||
ckpt: "/ibex/ai/project/c2090/minigpt4_ckpt/448_conversation_correct_best_v7_ablation1_v5_v6/20231007035/checkpoint_35.pth"
|
ckpt: ""
|
||||||
lora_r: 64
|
lora_r: 64
|
||||||
lora_alpha: 16
|
lora_alpha: 16
|
||||||
|
|
||||||
|
53
eval_scripts/EVAL_README.md
Normal file
53
eval_scripts/EVAL_README.md
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
## Evaluation Instruction for MiniGPT-v2
|
||||||
|
|
||||||
|
### Data preparation
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
### environment setup
|
||||||
|
|
||||||
|
```
|
||||||
|
export PYTHONPATH=$PYTHONPATH:/path/to/directory/of/MiniGPT-4
|
||||||
|
```
|
||||||
|
|
||||||
|
### start evalauting RefCOCO, RefCOCO+, RefCOCOg
|
||||||
|
port=port_number
|
||||||
|
cfg_path=/path/to/eval_configs/minigptv2_eval.yaml
|
||||||
|
eval_file_path=/path/to/eval/image/path
|
||||||
|
save_path=/path/to/save/path
|
||||||
|
ckpt=/path/to/evaluation/checkpoint
|
||||||
|
|
||||||
|
|
||||||
|
split=/evaluation/data/split/type # e.g. val, testA, testB, test
|
||||||
|
dataset=/data/type #refcoco, refcoco+, refcocog
|
||||||
|
|
||||||
|
```
|
||||||
|
torchrun --master-port ${port} --nproc_per_node 1 eval_ref.py \
|
||||||
|
--cfg-path ${cfg_path} --img_path ${IMG_PATH} --eval_file_path ${eval_file_path} --save_path ${save_path} \
|
||||||
|
--ckpt ${ckpt} --split ${split} --dataset ${dataset} --lora_r 64 --lora_alpha 16 \
|
||||||
|
--batch_size 10 --max_new_tokens 20 --resample
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
### start evaluating visual question answering
|
||||||
|
|
||||||
|
port=port_number
|
||||||
|
cfg_path=/path/to/eval_configs/minigptv2_eval.yaml
|
||||||
|
eval_file_path=/path/to/eval/image/path
|
||||||
|
save_path=/path/to/save/path
|
||||||
|
ckpt=/path/to/evaluation/checkpoint
|
||||||
|
|
||||||
|
|
||||||
|
split=/evaluation/data/split/type # e.g. val,test
|
||||||
|
dataset=/data/type # vqa data types: okvqa, vizwiz, iconvqa, gqa, vsr, hm
|
||||||
|
|
||||||
|
```
|
||||||
|
torchrun --master-port ${port} --nproc_per_node 1 eval_ref.py \
|
||||||
|
--cfg-path ${cfg_path} --img_path ${IMG_PATH} --eval_file_path ${eval_file_path} --save_path ${save_path} \
|
||||||
|
--ckpt ${ckpt} --split ${split} --dataset ${dataset} --lora_r 64 --lora_alpha 16 \
|
||||||
|
--batch_size 10 --max_new_tokens 20 --resample
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -11,7 +11,7 @@ import torch
|
|||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
from minigpt4.common.eval_utils import prepare_texts, init_model, eval_parser, computeIoU
|
from minigpt4.common.eval_utils import prepare_texts, init_model, eval_parser, computeIoU
|
||||||
from minigpt4.conversation.conversation import CONV_VISION_LLama2
|
from minigpt4.conversation.conversation import CONV_VISION_minigptv2
|
||||||
|
|
||||||
from minigpt4.datasets.datasets.coco_caption import RefCOCOEvalData
|
from minigpt4.datasets.datasets.coco_caption import RefCOCOEvalData
|
||||||
|
|
||||||
@ -25,8 +25,10 @@ parser.add_argument("--res", type=float, default=100.0, help="resolution used in
|
|||||||
parser.add_argument("--resample", action='store_true', help="resolution used in refcoco")
|
parser.add_argument("--resample", action='store_true', help="resolution used in refcoco")
|
||||||
parser.add_argument("--img_path", type=str)
|
parser.add_argument("--img_path", type=str)
|
||||||
parser.add_argument("--eval_file_path", type=str)
|
parser.add_argument("--eval_file_path", type=str)
|
||||||
|
parser.add_argument("--save_path", type=str)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
print(args.ckpt)
|
print(args.ckpt)
|
||||||
print(args.name)
|
print(args.name)
|
||||||
|
|
||||||
@ -36,23 +38,20 @@ eval_dict = {'refcoco': args.split,
|
|||||||
|
|
||||||
model, vis_processor = init_model(args)
|
model, vis_processor = init_model(args)
|
||||||
model.eval()
|
model.eval()
|
||||||
CONV_VISION = CONV_VISION_LLama2
|
CONV_VISION = CONV_VISION_minigptv2
|
||||||
conv_temp = CONV_VISION.copy()
|
conv_temp = CONV_VISION.copy()
|
||||||
conv_temp.system = ""
|
conv_temp.system = ""
|
||||||
|
#
|
||||||
model.eval()
|
model.eval()
|
||||||
img_path=f'{args.img_path}/COCO/cocoapi/data/2017/images/jpeg/train'
|
|
||||||
|
|
||||||
for dataset in args.dataset:
|
for dataset in args.dataset:
|
||||||
for split in eval_dict[dataset]:
|
for split in eval_dict[dataset]:
|
||||||
with open(f'{args.eval_file_path}/{dataset}/{dataset}_{split}.json', 'r') as f:
|
with open(os.path.join(args.eval_file_path,f"{dataset}/{dataset}_{split}.json"), 'r') as f:
|
||||||
refcoco = json.load(f)
|
refcoco = json.load(f)
|
||||||
|
|
||||||
data = RefCOCOEvalData(refcoco, vis_processor, img_path)
|
data = RefCOCOEvalData(refcoco, vis_processor, args.img_path)
|
||||||
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
||||||
|
|
||||||
minigpt4_predict = defaultdict(list)
|
minigpt4_predict = defaultdict(list)
|
||||||
|
|
||||||
resamples = []
|
resamples = []
|
||||||
|
|
||||||
for images, questions, img_ids in tqdm(eval_dataloader):
|
for images, questions, img_ids in tqdm(eval_dataloader):
|
||||||
@ -64,11 +63,10 @@ for dataset in args.dataset:
|
|||||||
if re.match(pattern, answer):
|
if re.match(pattern, answer):
|
||||||
minigpt4_predict[img_id].append(answer)
|
minigpt4_predict[img_id].append(answer)
|
||||||
else:
|
else:
|
||||||
resamples.append({'img_id': img_id, 'sents': [question.replace('[refer] where is','').replace('?','').strip()]})
|
resamples.append({'img_id': img_id, 'sents': [question.replace('[refer] give me the location of','').strip()]})
|
||||||
|
|
||||||
if args.resample:
|
if args.resample:
|
||||||
for i in range(20):
|
for i in range(20):
|
||||||
data = RefCOCOEvalData(resamples, vis_processor, img_path)
|
data = RefCOCOEvalData(resamples, vis_processor, args.img_path)
|
||||||
resamples = []
|
resamples = []
|
||||||
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
||||||
for images, questions, img_ids in tqdm(eval_dataloader):
|
for images, questions, img_ids in tqdm(eval_dataloader):
|
||||||
@ -80,12 +78,12 @@ for dataset in args.dataset:
|
|||||||
if re.match(pattern, answer) or i == 4:
|
if re.match(pattern, answer) or i == 4:
|
||||||
minigpt4_predict[img_id].append(answer)
|
minigpt4_predict[img_id].append(answer)
|
||||||
else:
|
else:
|
||||||
resamples.append({'img_id': img_id, 'sents': [question.replace('[refer] where is','').replace('?','').strip()]})
|
resamples.append({'img_id': img_id, 'sents': [question.replace('[refer] give me the location of','').strip()]})
|
||||||
|
|
||||||
if len(resamples) == 0:
|
if len(resamples) == 0:
|
||||||
break
|
break
|
||||||
|
|
||||||
with open(f'results/{args.name}_{dataset}_{split}.json','w') as f:
|
with open(args.save_path,'w') as f:
|
||||||
json.dump(minigpt4_predict, f)
|
json.dump(minigpt4_predict, f)
|
||||||
|
|
||||||
count=0
|
count=0
|
||||||
|
@ -13,44 +13,45 @@ from datasets import load_dataset
|
|||||||
|
|
||||||
|
|
||||||
from minigpt4.datasets.datasets.vqa_datasets import OKVQAEvalData,VizWizEvalData,IconQAEvalData,GQAEvalData,VSREvalData,HMEvalData
|
from minigpt4.datasets.datasets.vqa_datasets import OKVQAEvalData,VizWizEvalData,IconQAEvalData,GQAEvalData,VSREvalData,HMEvalData
|
||||||
|
|
||||||
from minigpt4.common.vqa_tools.VQA.PythonHelperTools.vqaTools.vqa import VQA
|
from minigpt4.common.vqa_tools.VQA.PythonHelperTools.vqaTools.vqa import VQA
|
||||||
from minigpt4.common.vqa_tools.VQA.PythonEvaluationTools.vqaEvaluation.vqaEval import VQAEval
|
from minigpt4.common.vqa_tools.VQA.PythonEvaluationTools.vqaEvaluation.vqaEval import VQAEval
|
||||||
|
|
||||||
from minigpt4.common.eval_utils import prepare_texts, init_model, eval_parser
|
from minigpt4.common.eval_utils import prepare_texts, init_model, eval_parser
|
||||||
from minigpt4.conversation.conversation import CONV_VISION_minigptv2
|
from minigpt4.conversation.conversation import CONV_VISION_minigptv2
|
||||||
import random
|
|
||||||
|
|
||||||
|
|
||||||
def list_of_str(arg):
|
def list_of_str(arg):
|
||||||
return list(map(str, arg.split(',')))
|
return list(map(str, arg.split(',')))
|
||||||
|
|
||||||
|
|
||||||
parser = eval_parser()
|
parser = eval_parser()
|
||||||
parser.add_argument("--dataset", type=list_of_str, default='refcoco', help="dataset to evaluate")
|
parser.add_argument("--dataset", type=list_of_str, default='refcoco', help="dataset to evaluate")
|
||||||
parser.add_argument("--split", type=list_of_str, default='testB', help="dataset split to evaluate")
|
parser.add_argument("--split", type=list_of_str, default='testB', help="dataset split to evaluate")
|
||||||
parser.add_argument("--resample", action='store_true', help="resolution used in refcoco")
|
parser.add_argument("--resample", action='store_true', help="resolution used in refcoco")
|
||||||
parser.add_argument("--img_path", type=str)
|
parser.add_argument("--img_path", type=str)
|
||||||
parser.add_argument("--eval_file_path", type=str)
|
parser.add_argument("--eval_file_path", type=str)
|
||||||
|
parser.add_argument("--save_path", type=str)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
print(args.ckpt)
|
print(args.ckpt)
|
||||||
print(args.name)
|
print(args.name)
|
||||||
|
|
||||||
model, vis_processor = init_model(args)
|
model, vis_processor = init_model(args)
|
||||||
conv_temp = CONV_VISION_LLama2.copy()
|
conv_temp = CONV_VISION_minigptv2.copy()
|
||||||
conv_temp.system = ""
|
conv_temp.system = ""
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
os.makedirs('results', exist_ok=True)
|
os.makedirs('results', exist_ok=True)
|
||||||
|
|
||||||
if 'okvqa' in args.dataset:
|
if 'okvqa' in args.dataset:
|
||||||
img_path=os.path.join(args.img_path,"train")
|
evaluation_annntation_path = os.path.join(args.eval_file_path, "test_split.json")
|
||||||
with open(os.path.join(args.eval_file_path,"ok_vqa/test_split.json")) as f:
|
with open(evaluation_annntation_path) as f:
|
||||||
ok_vqa_test_split = json.load(f)
|
ok_vqa_test_split = json.load(f)
|
||||||
|
|
||||||
data = OKVQAEvalData(ok_vqa_test_split, vis_processor, img_path)
|
data = OKVQAEvalData(ok_vqa_test_split, vis_processor, args.img_path)
|
||||||
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
||||||
minigpt4_predict = []
|
minigpt4_predict = []
|
||||||
|
|
||||||
@ -61,57 +62,28 @@ if 'okvqa' in args.dataset:
|
|||||||
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False)
|
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False)
|
||||||
|
|
||||||
for answer, question_id, question, img_id in zip(answers, question_ids, questions, img_ids):
|
for answer, question_id, question, img_id in zip(answers, question_ids, questions, img_ids):
|
||||||
result = dict()
|
|
||||||
if "<unk>" in answer.lower():
|
|
||||||
print("answer: ", answer)
|
|
||||||
answer = answer.lower().replace('<unk>','').strip()
|
|
||||||
result['answer'] = answer
|
|
||||||
result['question_id'] = int(question_id)
|
|
||||||
if answer == "":
|
|
||||||
resamples.append({'image_id': img_id, 'question_id':question_id, 'question': [question.replace('[vqa] Based on the image, respond to this question with a short answer:','').strip()]})
|
|
||||||
else:
|
|
||||||
minigpt4_predict.append(result)
|
|
||||||
|
|
||||||
if args.resample:
|
|
||||||
for i in range(20):
|
|
||||||
data = OKVQAEvalData(resamples, vis_processor, img_path)
|
|
||||||
resamples = []
|
|
||||||
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
|
||||||
for images, questions, question_ids, img_ids in eval_dataloader:
|
|
||||||
texts = prepare_texts(questions, conv_temp) # warp the texts with conversation template
|
|
||||||
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False)
|
|
||||||
for answer, question_id, question in zip(answers, question_ids, questions):
|
|
||||||
result = dict()
|
result = dict()
|
||||||
answer = answer.lower().replace('<unk>','').strip()
|
answer = answer.lower().replace('<unk>','').strip()
|
||||||
result['answer'] = answer
|
result['answer'] = answer
|
||||||
result['question_id'] = int(question_id)
|
result['question_id'] = int(question_id)
|
||||||
minigpt4_predict.append(result)
|
minigpt4_predict.append(result)
|
||||||
if answer == "":
|
|
||||||
resamples.append({'image_id': img_id, 'question_id':question_id, 'question': [question.replace('[vqa] Based on the image, respond to this question with a short answer:','').strip()]})
|
|
||||||
else:
|
|
||||||
minigpt4_predict.append(result)
|
|
||||||
if len(resamples) == 0:
|
|
||||||
break
|
|
||||||
|
|
||||||
save_path=f'results/{args.name}_okvqa.json'
|
with open(args.save_path,'w') as f:
|
||||||
with open(save_path,'w') as f:
|
|
||||||
json.dump(minigpt4_predict, f)
|
json.dump(minigpt4_predict, f)
|
||||||
|
|
||||||
annFile =f'{args.eval_file_path}/ok_vqa/mscoco_val2014_annotations_clean.json'
|
annFile = os.path.join(args.eval_file_path,"mscoco_val2014_annotations_clean.json")
|
||||||
quesFile =f'{args.eval_file_path}/ok_vqa/OpenEnded_mscoco_val2014_questions_clean.json'
|
quesFile = os.path.join(args.eval_file_path,"OpenEnded_mscoco_val2014_questions_clean.json" )
|
||||||
|
|
||||||
vqa = VQA(annFile, quesFile)
|
vqa = VQA(annFile, quesFile)
|
||||||
vqaRes = vqa.loadRes(save_path, quesFile)
|
vqaRes = vqa.loadRes(args.save_path, quesFile)
|
||||||
|
|
||||||
vqaEval = VQAEval(vqa, vqaRes, n=2)
|
vqaEval = VQAEval(vqa, vqaRes, n=2)
|
||||||
|
|
||||||
vqaEval.evaluate()
|
vqaEval.evaluate()
|
||||||
|
|
||||||
print ("Overall OKVQA Accuracy is: %.02f\n" %(vqaEval.accuracy['overall']), flush=True)
|
print ("Overall OKVQA Accuracy is: %.02f\n" %(vqaEval.accuracy['overall']), flush=True)
|
||||||
|
|
||||||
if 'vizwiz' in args.dataset:
|
if 'vizwiz' in args.dataset:
|
||||||
img_path=f'{args.img_path}/vizwiz/val'
|
img_path= args.img_path
|
||||||
vizwiz = json.load(open(f'{args.eval_file_path}/vizwiz/val.json', 'r'))
|
vizwiz = json.load(open(args.eval_file_path, 'r'))
|
||||||
|
|
||||||
data = VizWizEvalData(vizwiz, vis_processor, img_path)
|
data = VizWizEvalData(vizwiz, vis_processor, img_path)
|
||||||
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
||||||
@ -120,7 +92,7 @@ if 'vizwiz' in args.dataset:
|
|||||||
for images, texts, gt_answers in tqdm(eval_dataloader):
|
for images, texts, gt_answers in tqdm(eval_dataloader):
|
||||||
texts = prepare_texts(texts, conv_temp) # warp the texts with conversation template
|
texts = prepare_texts(texts, conv_temp) # warp the texts with conversation template
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False)
|
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False,repetition_penalty=1.0)
|
||||||
|
|
||||||
for answer, gt_answer in zip(answers, gt_answers):
|
for answer, gt_answer in zip(answers, gt_answers):
|
||||||
result = dict()
|
result = dict()
|
||||||
@ -134,52 +106,16 @@ if 'vizwiz' in args.dataset:
|
|||||||
acc = min(count/3.0, 1.0)
|
acc = min(count/3.0, 1.0)
|
||||||
total_acc.append(acc)
|
total_acc.append(acc)
|
||||||
|
|
||||||
save_path=f'results/{args.name}_vizwiz.json'
|
save_path=args.save_path
|
||||||
with open(save_path,'w') as f:
|
with open(save_path,'w') as f:
|
||||||
json.dump(minigpt4_predict, f)
|
json.dump(minigpt4_predict, f)
|
||||||
|
|
||||||
print('vizwiz Acc: ', np.average(total_acc)* 100.0, flush=True)
|
print('vizwiz Acc: ', np.average(total_acc)* 100.0, flush=True)
|
||||||
|
|
||||||
if 'aokvqa' in args.dataset:
|
|
||||||
img_path=f'{args.img_path}/aokvqa/images'
|
|
||||||
|
|
||||||
for split in args.split:
|
if 'iconvqa' in args.dataset:
|
||||||
with open(f'{args.eval_file_path}/aokvqa/annotations/aokvqa_v1p0_{split}.json','r') as f:
|
iconqa_text_val = json.load(open(args.eval_file_path,"r"))
|
||||||
aokvqa_v1p0 = json.load(f)
|
img_path = args.img_path
|
||||||
|
|
||||||
data = AOKVQADAEvalData(aokvqa_v1p0, vis_processor, img_path)
|
|
||||||
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
|
||||||
|
|
||||||
minigpt4_predict = defaultdict(dict)
|
|
||||||
|
|
||||||
for images, texts, question_ids in tqdm(eval_dataloader):
|
|
||||||
texts = prepare_texts(texts, conv_temp) # warp the texts with conversation template
|
|
||||||
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False)
|
|
||||||
|
|
||||||
for answer, question_id in zip(answers, question_ids):
|
|
||||||
minigpt4_predict[question_id]['direct_answer'] = answer.lower().replace('<unk>','').strip()
|
|
||||||
|
|
||||||
data = AOKVQAMCEvalData(aokvqa_v1p0, vis_processor, img_path)
|
|
||||||
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
|
||||||
|
|
||||||
for images, texts, question_ids, answers in tqdm(eval_dataloader):
|
|
||||||
instructions = ["[INST] <Img><ImageHere></Img> {} [/INST]".format(text) for text in texts]
|
|
||||||
answer_ranks = model.multi_select(images, instructions, answers)
|
|
||||||
candidates = [list(x) for x in zip(*answers)]
|
|
||||||
for idx, question_id in enumerate(question_ids):
|
|
||||||
minigpt4_predict[question_id]['multiple_choice'] = candidates[idx][answer_ranks[idx][0]]
|
|
||||||
|
|
||||||
save_path=f'results/{args.name}_a_okvqa_{split}.json'
|
|
||||||
with open(save_path,'w') as f:
|
|
||||||
json.dump(minigpt4_predict, f)
|
|
||||||
|
|
||||||
os.chdir('minigpt4/common/vqa_tools/aokvqa')
|
|
||||||
print(os.system(f'python evaluation/eval_predictions.py --aokvqa-dir {args.eval_file_path}/aokvqa/annotations --split {split} --preds ../../../../{save_path}'), flush=True)
|
|
||||||
os.chdir('../../../../')
|
|
||||||
|
|
||||||
if 'iconqa' in args.dataset:
|
|
||||||
iconqa_text_val = json.load(open(f'{eval_file_path}/iconqa/choose_text_val.json','r'))
|
|
||||||
img_path = f'{args.img_path}/iconqa/val/choose_txt'
|
|
||||||
data = IconQAEvalData(iconqa_text_val, vis_processor, img_path)
|
data = IconQAEvalData(iconqa_text_val, vis_processor, img_path)
|
||||||
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
||||||
|
|
||||||
@ -200,8 +136,8 @@ if 'iconqa' in args.dataset:
|
|||||||
|
|
||||||
|
|
||||||
if 'gqa' in args.dataset:
|
if 'gqa' in args.dataset:
|
||||||
img_path = f'{args.img_path}/gqa/images/val'
|
img_path = args.img_path
|
||||||
gqa = json.load(open(f'{args.eval_file_path}/gqa/annotations/testdev_balanced_questions.json', 'r'))
|
gqa = json.load(open(args.eval_file_path))
|
||||||
data = GQAEvalData(gqa, vis_processor, img_path)
|
data = GQAEvalData(gqa, vis_processor, img_path)
|
||||||
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
||||||
count=0
|
count=0
|
||||||
@ -221,13 +157,13 @@ if 'gqa' in args.dataset:
|
|||||||
total+=1
|
total+=1
|
||||||
print('gqa val:', count / total * 100, flush=True)
|
print('gqa val:', count / total * 100, flush=True)
|
||||||
|
|
||||||
save_path=f'results/{args.name}_gqa.json'
|
save_path=args.save_path
|
||||||
with open(save_path,'w') as f:
|
with open(save_path,'w') as f:
|
||||||
json.dump(minigpt4_predict, f)
|
json.dump(minigpt4_predict, f)
|
||||||
|
|
||||||
if 'vsr' in args.dataset:
|
if 'vsr' in args.dataset:
|
||||||
annotation = load_dataset("cambridgeltl/vsr_zeroshot", split='test')
|
annotation = load_dataset(args.eval_file_path, split='test')
|
||||||
img_path = f'{args.img_path}/vsr/images'
|
img_path = args.img_path
|
||||||
data = VSREvalData(annotation, vis_processor, img_path)
|
data = VSREvalData(annotation, vis_processor, img_path)
|
||||||
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
||||||
count=0
|
count=0
|
||||||
@ -237,11 +173,9 @@ if 'vsr' in args.dataset:
|
|||||||
|
|
||||||
for images, texts, labels in tqdm(eval_dataloader):
|
for images, texts, labels in tqdm(eval_dataloader):
|
||||||
texts = prepare_texts(texts, conv_temp) # warp the texts with conversation template
|
texts = prepare_texts(texts, conv_temp) # warp the texts with conversation template
|
||||||
# print("texts",texts)
|
|
||||||
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False)
|
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False)
|
||||||
|
|
||||||
for answer, label in zip(answers, labels):
|
for answer, label in zip(answers, labels):
|
||||||
print(answer)
|
|
||||||
result = dict()
|
result = dict()
|
||||||
result['pred'] = answer.replace('<unk>','').strip()
|
result['pred'] = answer.replace('<unk>','').strip()
|
||||||
result['gt'] = label
|
result['gt'] = label
|
||||||
@ -250,14 +184,13 @@ if 'vsr' in args.dataset:
|
|||||||
count+=1
|
count+=1
|
||||||
total+=1
|
total+=1
|
||||||
print('vsr test:', count / total * 100, flush=True)
|
print('vsr test:', count / total * 100, flush=True)
|
||||||
save_path=f'results/{args.name}_vsr.json'
|
with open(args.save_path,'w') as f:
|
||||||
with open(save_path,'w') as f:
|
|
||||||
json.dump(minigpt4_predict, f)
|
json.dump(minigpt4_predict, f)
|
||||||
|
|
||||||
if 'hm' in args.dataset:
|
if 'hm' in args.dataset:
|
||||||
img_path = f'{args.img_path}/hateful_meme'
|
img_path = args.img_path
|
||||||
annotation = []
|
annotation = []
|
||||||
with open(f'{args.eval_file_path}/hateful_meme/dev.jsonl', 'r') as jsonl_file:
|
with open(args.eval_file_path, 'r') as jsonl_file:
|
||||||
for line in jsonl_file:
|
for line in jsonl_file:
|
||||||
json_obj = json.loads(line)
|
json_obj = json.loads(line)
|
||||||
annotation.append(json_obj)
|
annotation.append(json_obj)
|
||||||
@ -271,19 +204,27 @@ if 'hm' in args.dataset:
|
|||||||
|
|
||||||
for images, texts, labels in tqdm(eval_dataloader):
|
for images, texts, labels in tqdm(eval_dataloader):
|
||||||
texts = prepare_texts(texts, conv_temp) # warp the texts with conversation template
|
texts = prepare_texts(texts, conv_temp) # warp the texts with conversation template
|
||||||
|
|
||||||
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False)
|
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False)
|
||||||
|
|
||||||
for answer, label in zip(answers, labels):
|
for answer, label in zip(answers, labels):
|
||||||
result = dict()
|
result = dict()
|
||||||
answer = 1 if answer.lower().__contains__('yes') else 0
|
if answer.lower().strip() =="yes":
|
||||||
result['pred'] = int(str(answer).replace('<unk>','').strip())
|
answer=1
|
||||||
|
elif answer.lower().strip()=="no":
|
||||||
|
answer=0
|
||||||
|
else:
|
||||||
|
print("answer",answer)
|
||||||
|
|
||||||
|
result['pred'] = answer
|
||||||
|
|
||||||
result['gt'] = int(label)
|
result['gt'] = int(label)
|
||||||
minigpt4_predict.append(result)
|
minigpt4_predict.append(result)
|
||||||
if answer == label:
|
if answer == label:
|
||||||
count+=1
|
count+=1
|
||||||
total+=1
|
total+=1
|
||||||
|
|
||||||
print('hm val:', count / total * 100, flush=True)
|
print('hm val:', count / total * 100, flush=True)
|
||||||
|
|
||||||
save_path=f'results/{args.name}_hm.json'
|
with open(args.save_path,'w') as f:
|
||||||
with open(save_path,'w') as f:
|
|
||||||
json.dump(minigpt4_predict, f)
|
json.dump(minigpt4_predict, f)
|
@ -91,7 +91,7 @@ class RefCOCOEvalData(torch.utils.data.Dataset):
|
|||||||
image_path = os.path.join(self.root_path, f'{img_id[:27]}.jpg')
|
image_path = os.path.join(self.root_path, f'{img_id[:27]}.jpg')
|
||||||
image = Image.open(image_path).convert('RGB')
|
image = Image.open(image_path).convert('RGB')
|
||||||
image = self.vis_processor(image)
|
image = self.vis_processor(image)
|
||||||
question = f"[refer] tell me the location of {sent}?"
|
question = f"[refer] give me the location of {sent}"
|
||||||
return image, question, img_id
|
return image, question, img_id
|
||||||
|
|
||||||
class EvalCaptionData(torch.utils.data.Dataset):
|
class EvalCaptionData(torch.utils.data.Dataset):
|
||||||
|
@ -16,30 +16,6 @@ class VQADataset(BaseDataset):
|
|||||||
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
|
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
|
||||||
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
|
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
|
||||||
|
|
||||||
# def collater(self, samples):
|
|
||||||
# image_list, question_list, answer_list, weight_list = [], [], [], []
|
|
||||||
|
|
||||||
# num_answers = []
|
|
||||||
|
|
||||||
# for sample in samples:
|
|
||||||
# image_list.append(sample["image"])
|
|
||||||
# question_list.append(sample["question"])
|
|
||||||
|
|
||||||
# weight_list.extend(sample["weights"])
|
|
||||||
|
|
||||||
# answers = sample["answer"]
|
|
||||||
|
|
||||||
# answer_list.extend(answers)
|
|
||||||
# num_answers.append(len(answers))
|
|
||||||
|
|
||||||
# return {
|
|
||||||
# "image": torch.stack(image_list, dim=0),
|
|
||||||
# "text_input": question_list,
|
|
||||||
# "answer": answer_list,
|
|
||||||
# "weight": torch.Tensor(weight_list),
|
|
||||||
# "n_answers": torch.LongTensor(num_answers),
|
|
||||||
# }
|
|
||||||
|
|
||||||
|
|
||||||
class VQAEvalDataset(BaseDataset):
|
class VQAEvalDataset(BaseDataset):
|
||||||
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
|
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
|
||||||
@ -85,7 +61,7 @@ class VizWizEvalData(torch.utils.data.Dataset):
|
|||||||
image_path = os.path.join(self.root_path, img_id)
|
image_path = os.path.join(self.root_path, img_id)
|
||||||
image = Image.open(image_path).convert('RGB')
|
image = Image.open(image_path).convert('RGB')
|
||||||
image = self.vis_processor(image)
|
image = self.vis_processor(image)
|
||||||
question = f"[vqa] The question is'{question}' Based on the image, answer the question with a single word or phrase. and reply 'unanswerable' when the provided information is insufficient" # 52.0
|
question = f"[vqa] The question is '{question}' Based on the image, answer the question with a single word or phrase. and reply 'unanswerable' when the provided information is insufficient"
|
||||||
return image, question, answers
|
return image, question, answers
|
||||||
|
|
||||||
class IconQAEvalData(torch.utils.data.Dataset):
|
class IconQAEvalData(torch.utils.data.Dataset):
|
||||||
|
@ -184,7 +184,7 @@ class BaseModel(nn.Module):
|
|||||||
else:
|
else:
|
||||||
llama_model = LlamaForCausalLM.from_pretrained(
|
llama_model = LlamaForCausalLM.from_pretrained(
|
||||||
llama_model_path,
|
llama_model_path,
|
||||||
torch_dtype=torch.float16,
|
torch_dtype=torch.float32,
|
||||||
)
|
)
|
||||||
|
|
||||||
if lora_r > 0:
|
if lora_r > 0:
|
||||||
|
@ -367,9 +367,18 @@ class MiniGPTBase(BaseModel):
|
|||||||
min_length=min_length,
|
min_length=min_length,
|
||||||
top_p=top_p,
|
top_p=top_p,
|
||||||
repetition_penalty=repetition_penalty,
|
repetition_penalty=repetition_penalty,
|
||||||
stopping_criteria=stopping_criteria,
|
# stopping_criteria=stopping_criteria,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# with self.maybe_autocast():
|
||||||
|
# outputs = self.llama_model.generate(
|
||||||
|
# inputs_embeds=embs,
|
||||||
|
# attention_mask=attn_mask,
|
||||||
|
# max_new_tokens=max_new_tokens,
|
||||||
|
# num_beams=num_beams,
|
||||||
|
# do_sample=do_sample,
|
||||||
|
# # stopping_criteria=stopping_criteria,
|
||||||
|
# )
|
||||||
answers = []
|
answers = []
|
||||||
for output_token in outputs:
|
for output_token in outputs:
|
||||||
if output_token[0] == 0:
|
if output_token[0] == 0:
|
||||||
|
Loading…
Reference in New Issue
Block a user