add eval mvtec

This commit is contained in:
ThuanNaN 2025-01-20 05:25:14 +07:00
parent 97601f7a90
commit 23d1614c13
3 changed files with 241 additions and 53 deletions

8
Makefile Normal file
View File

@ -0,0 +1,8 @@
eval_mvtec:
CUDA_VISIBLE_DEVICES=0 \
python eval_mvtec.py --cfg-path ./eval_configs/minigptv2_benchmark_evaluation.yaml
train_mvtec:
CUDA_VISIBLE_DEVICES=0 \
python train.py --cfg-path train_configs/minigptv2_finetune_mvtec.yaml

View File

@ -5,8 +5,8 @@ model:
end_sym: "</s>"
low_resource: False
prompt_template: '[INST] {} [/INST]'
llama_model: ""
ckpt: ""
llama_model: "meta-llama/Llama-2-7b-chat-hf"
ckpt: "./ckpt/checkpoint_stage3.pth"
lora_r: 64
lora_alpha: 16
@ -21,59 +21,14 @@ datasets:
train:
name: "blip_caption"
evaluation_datasets:
refcoco:
eval_file_path: /path/to/eval/annotation/path
img_path: /path/to/eval/image/path
max_new_tokens: 20
batch_size: 10
refcocog:
eval_file_path: /path/to/eval/annotation/path
img_path: /path/to/eval/image/path
max_new_tokens: 20
batch_size: 10
refcoco+:
eval_file_path: /path/to/eval/annotation/path
img_path: /path/to/eval/image/path
max_new_tokens: 20
batch_size: 10
gqa:
eval_file_path: /path/to/eval/annotation/path
img_path: /path/to/eval/image/path
max_new_tokens: 20
batch_size: 10
okvqa:
eval_file_path: /path/to/eval/annotation/path
img_path: /path/to/eval/image/path
max_new_tokens: 20
batch_size: 10
vizwiz:
eval_file_path: /path/to/eval/annotation/path
img_path: /path/to/eval/image/path
max_new_tokens: 20
batch_size: 10
iconvqa:
eval_file_path: /path/to/eval/annotation/path
img_path: /path/to/eval/image/path
max_new_tokens: 20
batch_size: 10
vsr:
eval_file_path: cambridgeltl/vsr_zeroshot
img_path: /path/to/eval/image/path
max_new_tokens: 20
batch_size: 10
hm:
eval_file_path: /path/to/eval/annotation/path
img_path: /path/to/eval/image/path
max_new_tokens: 20
batch_size: 100
mvtec_ad:
batch_size: 4
eval_file_path: ./data/MVTEC_det/val_data.json
max_new_tokens: 40
run:
task: image_text_pretrain
name: minigptv2_evaluation
save_path: /path/to/save/folder_path
save_path: eval_outputs

225
eval_mvtec.py Normal file
View File

@ -0,0 +1,225 @@
import os
import re
import json
from collections import defaultdict
from PIL import Image
from tqdm import tqdm
import torch
from torchmetrics.detection.mean_ap import MeanAveragePrecision
from torch.utils.data import DataLoader
from minigpt4.common.config import Config
from minigpt4.common.eval_utils import prepare_texts, init_model, eval_parser
from minigpt4.conversation.conversation import CONV_VISION_minigptv2
def list_of_str(arg):
return list(map(str, arg.split(',')))
parser = eval_parser()
parser.add_argument("--dataset", type=list_of_str, default='refcoco', help="dataset to evaluate")
parser.add_argument("--res", type=float, default=100.0, help="resolution used in refcoco")
parser.add_argument("--resample", action='store_true', help="resolution used in refcoco")
args = parser.parse_args()
cfg = Config(args)
model, vis_processor = init_model(args)
model.eval()
CONV_VISION = CONV_VISION_minigptv2
conv_temp = CONV_VISION.copy()
conv_temp.system = ""
save_path = cfg.run_cfg.save_path
os.makedirs(save_path, exist_ok=True)
class RefADEvalData(torch.utils.data.Dataset):
def __init__(self, loaded_data, vis_processor):
self.loaded_data = loaded_data
self.vis_processor = vis_processor
def __len__(self):
return len(self.loaded_data)
def __getitem__(self, idx):
data = self.loaded_data[idx]
sent = "[detection] a defect or not-defect object and return the bounding boxes and its label. If not, bound around the object."
img_id = (data["class"] + "." + os.path.basename(data["image_path"]).split(".")[0])
fix_path = os.path.join("./data/MVTEC_det/images", "/".join(data["image_path"].split("/")[1:4]))
image = Image.open(fix_path).convert("RGB")
image = self.vis_processor(image)
return image, sent, img_id, data["class"], data["image_path"]
eval_file_path = cfg.evaluation_datasets_cfg["mvtec_ad"]["eval_file_path"]
batch_size = cfg.evaluation_datasets_cfg["mvtec_ad"]["batch_size"]
max_new_tokens = cfg.evaluation_datasets_cfg["mvtec_ad"]["max_new_tokens"]
# Adapt the data loading to the RefCOCO format
with open(eval_file_path, "r") as f:
mvtec_ad_data_for_regression = json.load(f)
# mvtec_ad_data_for_regression = mvtec_ad_data_for_regression[:10]
data = RefADEvalData(mvtec_ad_data_for_regression, vis_processor)
eval_dataloader = DataLoader(data, batch_size=batch_size, shuffle=False)
minigpt4_predict = defaultdict(list)
resamples = []
for images, questions, img_ids, labels, image_paths in tqdm(eval_dataloader):
texts = prepare_texts(questions, conv_temp)
answers = model.generate(images,
texts,
max_new_tokens=max_new_tokens,
do_sample=False)
for answer, img_id, question, labels, image_paths in zip(
answers, img_ids, questions, labels, image_paths
):
answer = answer.replace("<unk>", "").replace(" ", "").strip()
pattern = r"<p>(.*?)<\/p>\{<\d{1,3}><\d{1,3}><\d{1,3}><\d{1,3}>\}"
if re.match(pattern, answer):
minigpt4_predict[img_id].append(answer)
else:
resamples.append(
{"img_id": img_id, "class": labels, "img_path": image_paths}
)
if args.resample:
for i in range(20):
data = RefADEvalData(resamples, vis_processor)
resamples = []
eval_dataloader = DataLoader(data, batch_size=batch_size, shuffle=False)
for images, questions, img_ids, labels, image_paths in tqdm(
eval_dataloader
):
texts = prepare_texts(questions, conv_temp)
answers = model.generate(images,
texts,
max_new_tokens=max_new_tokens,
do_sample=False)
for answer, img_id, question, labels, image_paths in zip(
answers, img_ids, questions, labels, image_paths
):
answer = answer.replace("<unk>", "").replace(" ", "").strip()
pattern = r"<p>(.*?)<\/p>\{<\d{1,3}><\d{1,3}><\d{1,3}><\d{1,3}>\}"
if re.match(pattern, answer) or i == 4:
minigpt4_predict[img_id].append(answer)
else:
resamples.append({
"img_id": img_id,
"class": labels,
"img_path": image_paths
})
if len(resamples) == 0:
break
# Save predictions
file_save_path = os.path.join(save_path, "mvtec_ad_regression.json")
with open(file_save_path, "w") as f:
json.dump(minigpt4_predict, f, indent=4)
metric = MeanAveragePrecision(iou_type="bbox", class_metrics=True)
# Calculate metrics
count = 0
total = 0
res = args.res
for item in mvtec_ad_data_for_regression:
img_id = (item["class"] + "." + os.path.basename(item["image_path"]).split(".")[0])
label = item["class"]
is_broken = item["is_broken"]
outputs = minigpt4_predict[img_id]
# Determine ground truth bounding box and class
if not is_broken:
# If not broken, the bounding box is the whole image
gt_bbox = [0, 0, item["width"], item["height"]]
gt_class = 0 # Class 0 for "not-defect"
else:
gt_bbox = [
item["bbox"][0],
item["bbox"][1],
item["bbox"][2],
item["bbox"][3],
]
gt_class = 1 # Class 1 for "defect"
# Ground truth data for torchmetrics
gt_boxes = torch.tensor([gt_bbox], dtype=torch.float)
gt_labels = torch.tensor([gt_class], dtype=torch.int)
outputs = minigpt4_predict[img_id]
pred_boxes = []
pred_scores = []
pred_labels = []
for output in outputs:
match = re.search(
r"<p>(.*?)<\/p>\{<(\d{1,3})><(\d{1,3})><(\d{1,3})><(\d{1,3})>\}",
output,
)
if match:
try:
pred_class_str = match.group(1).strip()
# Determine predicted class based on the string
if "not-defect" in pred_class_str:
pred_class = 0
elif "defect" in pred_class_str:
pred_class = 1
else:
pred_class = -1 # Or some other value to indicate uncertain
pred_bbox = [
int(match.group(2)),
int(match.group(3)),
int(match.group(4)),
int(match.group(5)),
]
height = item["height"]
width = item["width"]
pred_bbox[0] = pred_bbox[0] / res * width
pred_bbox[1] = pred_bbox[1] / res * height
pred_bbox[2] = pred_bbox[2] / res * width
pred_bbox[3] = pred_bbox[3] / res * height
pred_boxes.append(pred_bbox)
pred_scores.append(1.0) # Assuming confidence score of 1
pred_labels.append(pred_class)
except Exception as e:
print(f"Error processing output: {output}, Error: {e}")
continue
# Convert lists to tensors
if pred_boxes:
pred_boxes = torch.tensor(pred_boxes, dtype=torch.float)
pred_scores = torch.tensor(pred_scores, dtype=torch.float)
pred_labels = torch.tensor(pred_labels, dtype=torch.int)
else:
# Create empty tensors if no predictions were made
pred_boxes = torch.empty((0, 4), dtype=torch.float)
pred_scores = torch.empty(0, dtype=torch.float)
pred_labels = torch.empty(0, dtype=torch.int)
# Update metric
metric.update(
[dict(boxes=pred_boxes, scores=pred_scores, labels=pred_labels)],
[dict(boxes=gt_boxes, labels=gt_labels)],
)
# Compute metric
result = metric.compute()
map_value = result["map"].item()
# Print class-wise metrics
# for i, class_map in enumerate(result["map_per_class"]):
# class_name = "defect" if i == 1 else "not-defect"
# print( f"mAP for {class_name}: {class_map.item() * 100 if not torch.isnan(class_map) else 0:.4f}",
# flush=True
# )
print(f"mAP: {map_value * 100}", flush=True)