mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-04 01:50:47 +00:00
Update README.md
This commit is contained in:
parent
5b60674e8f
commit
3000873dcc
75
README.md
75
README.md
@ -9,9 +9,9 @@
|
||||
|
||||
|
||||
## News
|
||||
Breaking! We release the first major update with our MiniGPT-v2
|
||||
[Oct.13 2023] Breaking! We release the first major update with our MiniGPT-v2
|
||||
|
||||
We now provide a llama 2 version of MiniGPT-4
|
||||
[Aug.28 2023] We now provide a llama 2 version of MiniGPT-4
|
||||
|
||||
## Online Demo
|
||||
|
||||
@ -22,13 +22,13 @@ Click the image to chat with MiniGPT-4 around your images
|
||||
[](https://minigpt-4.github.io)
|
||||
|
||||
|
||||
## Examples
|
||||
## MiniGPT-v2 Examples
|
||||
|
||||

|
||||
|
||||
|
||||
|
||||
|
||||
## MiniGPT-4 Examples
|
||||
| | |
|
||||
:-------------------------:|:-------------------------:
|
||||
 | 
|
||||
@ -38,17 +38,6 @@ More examples can be found in the [project page](https://minigpt-4.github.io).
|
||||
|
||||
|
||||
|
||||
<!-- ## Introduction
|
||||
- MiniGPT-4 aligns a frozen visual encoder from BLIP-2 with a frozen LLM, Vicuna, using just one projection layer.
|
||||
- We train MiniGPT-4 with two stages. The first traditional pretraining stage is trained using roughly 5 million aligned image-text pairs in 10 hours using 4 A100s. After the first stage, Vicuna is able to understand the image. But the generation ability of Vicuna is heavily impacted.
|
||||
- To address this issue and improve usability, we propose a novel way to create high-quality image-text pairs by the model itself and ChatGPT together. Based on this, we then create a small (3500 pairs in total) yet high-quality dataset.
|
||||
- The second finetuning stage is trained on this dataset in a conversation template to significantly improve its generation reliability and overall usability. To our surprise, this stage is computationally efficient and takes only around 7 minutes with a single A100.
|
||||
- MiniGPT-4 yields many emerging vision-language capabilities similar to those demonstrated in GPT-4. -->
|
||||
|
||||
|
||||
<!--  -->
|
||||
|
||||
|
||||
## Getting Started
|
||||
### Installation
|
||||
|
||||
@ -66,12 +55,12 @@ conda activate minigpt4
|
||||
|
||||
**2. Prepare the pretrained LLM weights**
|
||||
|
||||
Currently, we provide both Vicuna V0 and Llama 2 version of MiniGPT-4.
|
||||
**MiniGPT-v2** is based on Llama2 Chat 7B. For **MiniGPT-4**, we have both Vicuna V0 and Llama 2 version.
|
||||
Download the corresponding LLM weights from the following huggingface space via clone the repository using git-lfs.
|
||||
|
||||
| Vicuna V0 13B | Vicuna V0 7B | Llama 2 Chat 7B |
|
||||
| Llama 2 Chat 7B | Vicuna V0 13B | Vicuna V0 7B |
|
||||
:------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:
|
||||
[Downlad](https://huggingface.co/Vision-CAIR/vicuna/tree/main) | [Download](https://huggingface.co/Vision-CAIR/vicuna-7b/tree/main) | [Download](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf/tree/main)
|
||||
[Download](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf/tree/main) | [Downlad](https://huggingface.co/Vision-CAIR/vicuna/tree/main) | [Download](https://huggingface.co/Vision-CAIR/vicuna-7b/tree/main)
|
||||
|
||||
|
||||
Then, set the path to the vicuna weight in the model config file
|
||||
@ -79,60 +68,60 @@ Then, set the path to the vicuna weight in the model config file
|
||||
and/or the path to the llama2 weight in the model config file
|
||||
[here](minigpt4/configs/models/minigpt4_llama2.yaml#L15) at Line 15.
|
||||
|
||||
**3. Prepare the pretrained MiniGPT-4 checkpoint**
|
||||
**3. Prepare the pretrained model checkpoints**
|
||||
|
||||
Download the pretrained checkpoints according to the Vicuna model you prepare.
|
||||
<!--
|
||||
| Checkpoint with Vicuna 13B | Checkpoint with Vicuna 7B | Checkpoint with LLaMA-2 Chat 7B | MiniGPT-v2 with LLaMA-2 chat |
|
||||
:--------------------------------------------------:|:----------------------------------------------------------------:|
|
||||
:-----------------------------------------------------------------:|
|
||||
:------------------------------------------------------------------:
|
||||
[Download](https://drive.google.com/file/d/1a4zLvaiDBr-36pasffmgpvH5P7CKmpze/view?usp=share_link) | [Download](https://drive.google.com/file/d/1RY9jV0dyqLX-o38LrumkKRh6Jtaop58R/view?usp=sharing) | [Download](https://drive.google.com/file/d/11nAPjEok8eAGGEG1N2vXo3kBLCg0WgUk/view?usp=sharing) | [Download](https://drive.google.com/file/d/1aVbfW7nkCSYx99_vCRyP1sOlQiWVSnAl/view?usp=sharing) -->
|
||||
Download the pretrained checkpoints
|
||||
|
||||
| Checkpoint with Vicuna 13B | Checkpoint with Vicuna 7B | Checkpoint with LLaMA-2 Chat 7B | MiniGPT-v2 with LLaMA-2 chat |
|
||||
|----------------------------|---------------------------|---------------------------------|------------------------------|
|
||||
| [Download](https://drive.google.com/file/d/1a4zLvaiDBr-36pasffmgpvH5P7CKmpze/view?usp=share_link) | [Download](https://drive.google.com/file/d/1RY9jV0dyqLX-o38LrumkKRh6Jtaop58R/view?usp=sharing) | [Download](https://drive.google.com/file/d/11nAPjEok8eAGGEG1N2vXo3kBLCg0WgUk/view?usp=sharing) | [Download](https://drive.google.com/file/d/1aVbfW7nkCSYx99_vCRyP1sOlQiWVSnAl/view?usp=sharing) |
|
||||
|
||||
| MiniGPT-v2 (LLaMA-2 Chat 7B) |
|
||||
|------------------------------|
|
||||
| [Download](https://drive.google.com/file/d/1aVbfW7nkCSYx99_vCRyP1sOlQiWVSnAl/view?usp=sharing) |
|
||||
|
||||
For **MiniGPT-v2**, set the path to the pretrained checkpoint in the evaluation config file
|
||||
in [eval_configs/minigptv2_eval.yaml](eval_configs/minigptv2_eval.yaml#L10) at Line 8.
|
||||
|
||||
|
||||
|
||||
Then, set the path to the pretrained checkpoint in the evaluation config file
|
||||
| MiniGPT-4 (Vicuna 13B) | MiniGPT-4 (Vicuna 7B) | MiniGPT-4 (LLaMA-2 Chat 7B) |
|
||||
|----------------------------|---------------------------|---------------------------------|
|
||||
| [Download](https://drive.google.com/file/d/1a4zLvaiDBr-36pasffmgpvH5P7CKmpze/view?usp=share_link) | [Download](https://drive.google.com/file/d/1RY9jV0dyqLX-o38LrumkKRh6Jtaop58R/view?usp=sharing) | [Download](https://drive.google.com/file/d/11nAPjEok8eAGGEG1N2vXo3kBLCg0WgUk/view?usp=sharing) |
|
||||
|
||||
For **MiniGPT-4**, set the path to the pretrained checkpoint in the evaluation config file
|
||||
in [eval_configs/minigpt4_eval.yaml](eval_configs/minigpt4_eval.yaml#L10) at Line 8 for Vicuna version or [eval_configs/minigpt4_llama2_eval.yaml](eval_configs/minigpt4_llama2_eval.yaml#L10) for LLama2 version.
|
||||
|
||||
|
||||
|
||||
### Launching Demo Locally
|
||||
|
||||
Try out our demo [demo.py](demo.py) for the vicuna version on your local machine by running
|
||||
For MiniGPT-v2, run
|
||||
```
|
||||
python demo_v2.py --cfg-path eval_configs/minigpt4v2_eval.yaml --gpu-id 0
|
||||
```
|
||||
|
||||
For MiniGPT-4 (Vicuna version), run
|
||||
|
||||
```
|
||||
python demo.py --cfg-path eval_configs/minigpt4_eval.yaml --gpu-id 0
|
||||
```
|
||||
|
||||
or for Llama 2 version by
|
||||
For MiniGPT-4 (Llama2 version), run
|
||||
|
||||
```
|
||||
python demo.py --cfg-path eval_configs/minigpt4_llama2_eval.yaml --gpu-id 0
|
||||
```
|
||||
|
||||
or for MiniGPT-v2 version by
|
||||
|
||||
```
|
||||
python demo_v2.py --cfg-path eval_configs/minigpt4v2_eval.yaml --gpu-id 0
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
||||
To save GPU memory, LLMs loads as 8 bit by default, with a beam search width of 1.
|
||||
This configuration requires about 23G GPU memory for 13B LLM and 11.5G GPU memory for 7B LLM.
|
||||
For more powerful GPUs, you can run the model
|
||||
in 16 bit by setting `low_resource` to `False` in the relevant config file
|
||||
(line 6 of either [minigpt4_eval.yaml](eval_configs/minigpt4_eval.yaml#6) if using Vicuna or [minigpt4_llama2_eval.yaml](eval_configs/minigpt4_llama2_eval.yaml#6) if using Llama 2) and use a larger beam search width.
|
||||
(**MiniGPT-v2**: [minigptv2_eval.yaml](eval_configs/minigptv2_eval.yaml#6); **MiniGPT-4 (Llama2)**: [minigpt4_llama2_eval.yaml](eval_configs/minigpt4_llama2_eval.yaml#6); **MiniGPT-4 (Vicuna)**: [minigpt4_eval.yaml](eval_configs/minigpt4_eval.yaml#6))
|
||||
|
||||
Thanks [@WangRongsheng](https://github.com/WangRongsheng), you can also run our code on [Colab](https://colab.research.google.com/drive/1OK4kYsZphwt5DXchKkzMBjYF6jnkqh4R?usp=sharing)
|
||||
Thanks [@WangRongsheng](https://github.com/WangRongsheng), you can also run MiniGPT-4 on [Colab](https://colab.research.google.com/drive/1OK4kYsZphwt5DXchKkzMBjYF6jnkqh4R?usp=sharing)
|
||||
|
||||
|
||||
### Training
|
||||
For training details of MiniGPT-4, check [here]().
|
||||
The training of MiniGPT-4 contains two alignment stages.
|
||||
|
||||
**1. First pretraining stage**
|
||||
@ -189,7 +178,7 @@ If you're using MiniGPT-4 in your research or applications, please cite using th
|
||||
|
||||
@article{Chen2023minigpt,
|
||||
title={MiniGPT-v2: Large Language Model as a Unified Interface for Vision-Language Multi-task Learning},
|
||||
author={Chen, jun and Deyao, Zhu and Shen, Xiaoqian and Li, Xiang, Liu Zechu, Zhang Pengchuan, Krishnamoorthi Raghuraman, Chandra Vikas, Xiong Yunyang and Elhoseiny, Mohamed},
|
||||
author={Chen, Jun and Zhu, Deyao and Shen, Xiaoqian and Li, Xiang and Liu, Zechu and Zhang, Pengchuan and Krishnamoorthi, Raghuraman and Chandra, Vikas and Xiong, Yunyang and Elhoseiny, Mohamed},
|
||||
journal={github},
|
||||
year={2023}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user