mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-05 02:20:47 +00:00
Merge 58c665d75e
into ef1ac08ce3
This commit is contained in:
commit
30a5293c24
@ -28,7 +28,7 @@ pip install git+https://github.com/lm-sys/FastChat.git@v0.1.10
|
||||
Then, run the following command to create the final working weight
|
||||
|
||||
```
|
||||
python -m fastchat.model.apply_delta --base /path/to/llama-13bOR7b-hf/ --target /path/to/save/working/vicuna/weight/ --delta /path/to/vicuna-13bOR7b-delta-v0/
|
||||
python -m fastchat.model.apply_delta --base /absolute/path/to/llama-13bOR7b-hf/ --target /absolute/path/to/save/working/vicuna/weight/ --delta /absolute/path/to/vicuna-13bOR7b-delta-v0/
|
||||
```
|
||||
|
||||
Now you are good to go!
|
||||
|
12
README.md
12
README.md
@ -64,9 +64,9 @@ Download the corresponding LLM weights from the following huggingface space via
|
||||
[Downlad](https://huggingface.co/Vision-CAIR/vicuna/tree/main) | [Download](https://huggingface.co/Vision-CAIR/vicuna-7b/tree/main) | [Download](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf/tree/main)
|
||||
|
||||
|
||||
Then, set the path to the vicuna weight in the model config file
|
||||
Then, set the absolute path to the vicuna weight in the model config file
|
||||
[here](minigpt4/configs/models/minigpt4_vicuna0.yaml#L18) at Line 18
|
||||
and/or the path to the llama2 weight in the model config file
|
||||
and/or the absolute path to the llama2 weight in the model config file
|
||||
[here](minigpt4/configs/models/minigpt4_llama2.yaml#L15) at Line 15.
|
||||
|
||||
**3. Prepare the pretrained MiniGPT-4 checkpoint**
|
||||
@ -78,7 +78,7 @@ Download the pretrained checkpoints according to the Vicuna model you prepare.
|
||||
[Downlad](https://drive.google.com/file/d/1a4zLvaiDBr-36pasffmgpvH5P7CKmpze/view?usp=share_link) | [Download](https://drive.google.com/file/d/1RY9jV0dyqLX-o38LrumkKRh6Jtaop58R/view?usp=sharing) | [Download](https://drive.google.com/file/d/11nAPjEok8eAGGEG1N2vXo3kBLCg0WgUk/view?usp=sharing)
|
||||
|
||||
|
||||
Then, set the path to the pretrained checkpoint in the evaluation config file
|
||||
Then, set the absolute path to the pretrained checkpoint in the evaluation config file
|
||||
in [eval_configs/minigpt4_eval.yaml](eval_configs/minigpt4_eval.yaml#L10) at Line 8 for Vicuna version or [eval_configs/minigpt4_llama2_eval.yaml](eval_configs/minigpt4_llama2_eval.yaml#L10) for LLama2 version.
|
||||
|
||||
|
||||
@ -118,7 +118,7 @@ our [first stage dataset preparation instruction](dataset/README_1_STAGE.md).
|
||||
After the first stage, the visual features are mapped and can be understood by the language
|
||||
model.
|
||||
To launch the first stage training, run the following command. In our experiments, we use 4 A100.
|
||||
You can change the save path in the config file
|
||||
You can change the relative save path in the config file
|
||||
[train_configs/minigpt4_stage1_pretrain.yaml](train_configs/minigpt4_stage1_pretrain.yaml)
|
||||
|
||||
```bash
|
||||
@ -137,9 +137,9 @@ and convert it to a conversation format to further align MiniGPT-4.
|
||||
To download and prepare our second stage dataset, please check our
|
||||
[second stage dataset preparation instruction](dataset/README_2_STAGE.md).
|
||||
To launch the second stage alignment,
|
||||
first specify the path to the checkpoint file trained in stage 1 in
|
||||
first specify the absolute path to the checkpoint file trained in stage 1 in
|
||||
[train_configs/minigpt4_stage1_pretrain.yaml](train_configs/minigpt4_stage2_finetune.yaml).
|
||||
You can also specify the output path there.
|
||||
You can also specify the relative output path there.
|
||||
Then, run the following command. In our experiments, we use 1 A100.
|
||||
|
||||
```bash
|
||||
|
@ -21,7 +21,7 @@ laion_synthetic_filtered_large.json
|
||||
|
||||
### setup the dataset folder and move the annotation file to the data storage folder
|
||||
```
|
||||
export MINIGPT4_DATASET=/YOUR/PATH/FOR/LARGE/DATASET/
|
||||
export MINIGPT4_DATASET=/YOUR/ABSOLUTE/PATH/FOR/LARGE/DATASET/
|
||||
mkdir ${MINIGPT4_DATASET}/cc_sbu
|
||||
mkdir ${MINIGPT4_DATASET}/laion
|
||||
mv ccs_synthetic_filtered_large.json ${MINIGPT4_DATASET}/cc_sbu
|
||||
@ -84,11 +84,11 @@ The final dataset structure
|
||||
|
||||
## Set up the dataset configuration files
|
||||
|
||||
Then, set up the LAION dataset loading path in
|
||||
Then, set up the absolute LAION dataset loading path in
|
||||
[here](../minigpt4/configs/datasets/laion/defaults.yaml#L5) at Line 5 as
|
||||
${MINIGPT4_DATASET}/laion/laion_dataset/{00000..10488}.tar
|
||||
|
||||
and the Conceptual Captoin and SBU datasets loading path in
|
||||
and the absolute Conceptual Captoin and SBU datasets loading path in
|
||||
[here](../minigpt4/configs/datasets/cc_sbu/defaults.yaml#L5) at Line 5 as
|
||||
${MINIGPT4_DATASET}/cc_sbu/cc_sbu_dataset/{00000..01255}.tar
|
||||
|
||||
|
@ -14,6 +14,6 @@ cc_sbu_align
|
||||
```
|
||||
|
||||
Put the folder to any path you want.
|
||||
Then, set up the dataset path in the dataset config file
|
||||
Then, set up the absolute dataset path in the dataset config file
|
||||
[here](../minigpt4/configs/datasets/cc_sbu/align.yaml#L5) at Line 5.
|
||||
|
||||
|
@ -5,7 +5,7 @@ model:
|
||||
end_sym: "</s>"
|
||||
low_resource: True
|
||||
prompt_template: '[INST] {} [/INST] '
|
||||
ckpt: '/path/to/checkpoint/'
|
||||
ckpt: '/absolute/path/to/checkpoint/'
|
||||
|
||||
|
||||
datasets:
|
||||
|
@ -2,4 +2,4 @@ datasets:
|
||||
cc_sbu_align:
|
||||
data_type: images
|
||||
build_info:
|
||||
storage: /path/to/cc_sbu_align/
|
||||
storage: /absolute/path/to/cc_sbu_align/
|
||||
|
@ -2,4 +2,4 @@ datasets:
|
||||
cc_sbu:
|
||||
data_type: images
|
||||
build_info:
|
||||
storage: /path/to/cc_sbu_dataset/{00000..01255}.tar
|
||||
storage: /absolute/path/to/cc_sbu_dataset/{00000..01255}.tar
|
||||
|
@ -2,4 +2,4 @@ datasets:
|
||||
laion:
|
||||
data_type: images
|
||||
build_info:
|
||||
storage: /path/to/laion_dataset/{00000..10488}.tar
|
||||
storage: /absolute/path/to/laion_dataset/{00000..10488}.tar
|
||||
|
@ -12,7 +12,7 @@ model:
|
||||
# generation configs
|
||||
prompt: ""
|
||||
|
||||
llama_model: "/path/to/llama2/weight"
|
||||
llama_model: "/absolute/path/to/llama2/weight"
|
||||
|
||||
preprocess:
|
||||
vis_processor:
|
||||
|
@ -15,7 +15,7 @@ model:
|
||||
# generation configs
|
||||
prompt: ""
|
||||
|
||||
llama_model: "/path/to/vicuna/weight"
|
||||
llama_model: "/absolute/path/to/vicuna/weight"
|
||||
|
||||
preprocess:
|
||||
vis_processor:
|
||||
|
@ -6,7 +6,7 @@ model:
|
||||
end_sym: "</s>"
|
||||
prompt_path: "prompts/alignment.txt"
|
||||
prompt_template: '[INST] {} [/INST] '
|
||||
ckpt: '/path/to/stage1/checkpoint/'
|
||||
ckpt: '/absolute/path/to/stage1/checkpoint/'
|
||||
|
||||
|
||||
datasets:
|
||||
|
@ -6,7 +6,7 @@ model:
|
||||
end_sym: "###"
|
||||
prompt_path: "prompts/alignment.txt"
|
||||
prompt_template: '###Human: {} ###Assistant: '
|
||||
ckpt: '/path/to/stage1/checkpoint/'
|
||||
ckpt: '/absolute/path/to/stage1/checkpoint/'
|
||||
|
||||
|
||||
datasets:
|
||||
|
Loading…
Reference in New Issue
Block a user