This commit is contained in:
Sypherd 2023-09-19 08:15:45 -06:00 committed by GitHub
commit 30a5293c24
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 19 additions and 19 deletions

View File

@ -28,7 +28,7 @@ pip install git+https://github.com/lm-sys/FastChat.git@v0.1.10
Then, run the following command to create the final working weight
```
python -m fastchat.model.apply_delta --base /path/to/llama-13bOR7b-hf/ --target /path/to/save/working/vicuna/weight/ --delta /path/to/vicuna-13bOR7b-delta-v0/
python -m fastchat.model.apply_delta --base /absolute/path/to/llama-13bOR7b-hf/ --target /absolute/path/to/save/working/vicuna/weight/ --delta /absolute/path/to/vicuna-13bOR7b-delta-v0/
```
Now you are good to go!

View File

@ -64,9 +64,9 @@ Download the corresponding LLM weights from the following huggingface space via
[Downlad](https://huggingface.co/Vision-CAIR/vicuna/tree/main) | [Download](https://huggingface.co/Vision-CAIR/vicuna-7b/tree/main) | [Download](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf/tree/main)
Then, set the path to the vicuna weight in the model config file
Then, set the absolute path to the vicuna weight in the model config file
[here](minigpt4/configs/models/minigpt4_vicuna0.yaml#L18) at Line 18
and/or the path to the llama2 weight in the model config file
and/or the absolute path to the llama2 weight in the model config file
[here](minigpt4/configs/models/minigpt4_llama2.yaml#L15) at Line 15.
**3. Prepare the pretrained MiniGPT-4 checkpoint**
@ -78,7 +78,7 @@ Download the pretrained checkpoints according to the Vicuna model you prepare.
[Downlad](https://drive.google.com/file/d/1a4zLvaiDBr-36pasffmgpvH5P7CKmpze/view?usp=share_link) | [Download](https://drive.google.com/file/d/1RY9jV0dyqLX-o38LrumkKRh6Jtaop58R/view?usp=sharing) | [Download](https://drive.google.com/file/d/11nAPjEok8eAGGEG1N2vXo3kBLCg0WgUk/view?usp=sharing)
Then, set the path to the pretrained checkpoint in the evaluation config file
Then, set the absolute path to the pretrained checkpoint in the evaluation config file
in [eval_configs/minigpt4_eval.yaml](eval_configs/minigpt4_eval.yaml#L10) at Line 8 for Vicuna version or [eval_configs/minigpt4_llama2_eval.yaml](eval_configs/minigpt4_llama2_eval.yaml#L10) for LLama2 version.
@ -118,7 +118,7 @@ our [first stage dataset preparation instruction](dataset/README_1_STAGE.md).
After the first stage, the visual features are mapped and can be understood by the language
model.
To launch the first stage training, run the following command. In our experiments, we use 4 A100.
You can change the save path in the config file
You can change the relative save path in the config file
[train_configs/minigpt4_stage1_pretrain.yaml](train_configs/minigpt4_stage1_pretrain.yaml)
```bash
@ -137,9 +137,9 @@ and convert it to a conversation format to further align MiniGPT-4.
To download and prepare our second stage dataset, please check our
[second stage dataset preparation instruction](dataset/README_2_STAGE.md).
To launch the second stage alignment,
first specify the path to the checkpoint file trained in stage 1 in
first specify the absolute path to the checkpoint file trained in stage 1 in
[train_configs/minigpt4_stage1_pretrain.yaml](train_configs/minigpt4_stage2_finetune.yaml).
You can also specify the output path there.
You can also specify the relative output path there.
Then, run the following command. In our experiments, we use 1 A100.
```bash

View File

@ -21,7 +21,7 @@ laion_synthetic_filtered_large.json
### setup the dataset folder and move the annotation file to the data storage folder
```
export MINIGPT4_DATASET=/YOUR/PATH/FOR/LARGE/DATASET/
export MINIGPT4_DATASET=/YOUR/ABSOLUTE/PATH/FOR/LARGE/DATASET/
mkdir ${MINIGPT4_DATASET}/cc_sbu
mkdir ${MINIGPT4_DATASET}/laion
mv ccs_synthetic_filtered_large.json ${MINIGPT4_DATASET}/cc_sbu
@ -84,11 +84,11 @@ The final dataset structure
## Set up the dataset configuration files
Then, set up the LAION dataset loading path in
Then, set up the absolute LAION dataset loading path in
[here](../minigpt4/configs/datasets/laion/defaults.yaml#L5) at Line 5 as
${MINIGPT4_DATASET}/laion/laion_dataset/{00000..10488}.tar
and the Conceptual Captoin and SBU datasets loading path in
and the absolute Conceptual Captoin and SBU datasets loading path in
[here](../minigpt4/configs/datasets/cc_sbu/defaults.yaml#L5) at Line 5 as
${MINIGPT4_DATASET}/cc_sbu/cc_sbu_dataset/{00000..01255}.tar

View File

@ -14,6 +14,6 @@ cc_sbu_align
```
Put the folder to any path you want.
Then, set up the dataset path in the dataset config file
Then, set up the absolute dataset path in the dataset config file
[here](../minigpt4/configs/datasets/cc_sbu/align.yaml#L5) at Line 5.

View File

@ -5,7 +5,7 @@ model:
end_sym: "</s>"
low_resource: True
prompt_template: '[INST] {} [/INST] '
ckpt: '/path/to/checkpoint/'
ckpt: '/absolute/path/to/checkpoint/'
datasets:

View File

@ -2,4 +2,4 @@ datasets:
cc_sbu_align:
data_type: images
build_info:
storage: /path/to/cc_sbu_align/
storage: /absolute/path/to/cc_sbu_align/

View File

@ -2,4 +2,4 @@ datasets:
cc_sbu:
data_type: images
build_info:
storage: /path/to/cc_sbu_dataset/{00000..01255}.tar
storage: /absolute/path/to/cc_sbu_dataset/{00000..01255}.tar

View File

@ -2,4 +2,4 @@ datasets:
laion:
data_type: images
build_info:
storage: /path/to/laion_dataset/{00000..10488}.tar
storage: /absolute/path/to/laion_dataset/{00000..10488}.tar

View File

@ -12,7 +12,7 @@ model:
# generation configs
prompt: ""
llama_model: "/path/to/llama2/weight"
llama_model: "/absolute/path/to/llama2/weight"
preprocess:
vis_processor:

View File

@ -15,7 +15,7 @@ model:
# generation configs
prompt: ""
llama_model: "/path/to/vicuna/weight"
llama_model: "/absolute/path/to/vicuna/weight"
preprocess:
vis_processor:

View File

@ -6,7 +6,7 @@ model:
end_sym: "</s>"
prompt_path: "prompts/alignment.txt"
prompt_template: '[INST] {} [/INST] '
ckpt: '/path/to/stage1/checkpoint/'
ckpt: '/absolute/path/to/stage1/checkpoint/'
datasets:

View File

@ -6,7 +6,7 @@ model:
end_sym: "###"
prompt_path: "prompts/alignment.txt"
prompt_template: '###Human: {} ###Assistant: '
ckpt: '/path/to/stage1/checkpoint/'
ckpt: '/absolute/path/to/stage1/checkpoint/'
datasets: