1
0
mirror of https://github.com/Vision-CAIR/MiniGPT-4.git synced 2025-04-08 20:10:48 +00:00

Merge pull request from 152334H/int8

consumer gpu inference
This commit is contained in:
ZhuDeyao 2023-04-17 15:34:20 +03:00 committed by GitHub
commit 3e03c8327f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 18 additions and 11 deletions

View File

@ -113,8 +113,8 @@ with gr.Blocks() as demo:
num_beams = gr.Slider(
minimum=1,
maximum=16,
value=5,
maximum=10,
value=1,
step=1,
interactive=True,
label="beam search numbers)",

View File

@ -25,7 +25,7 @@ dependencies:
- filelock==3.9.0
- fonttools==4.38.0
- frozenlist==1.3.3
- huggingface-hub==0.12.1
- huggingface-hub==0.13.4
- importlib-resources==5.12.0
- kiwisolver==1.4.4
- matplotlib==3.7.0

View File

@ -134,8 +134,8 @@ class Chat:
else:
conv.append_message(conv.roles[0], text)
def answer(self, conv, img_list, max_new_tokens=200, num_beams=5, min_length=1, top_p=0.9,
repetition_penalty=1.0, length_penalty=1, temperature=1):
def answer(self, conv, img_list, max_new_tokens=200, num_beams=1, min_length=1, top_p=0.9,
repetition_penalty=1.0, length_penalty=1, temperature=1.0):
conv.append_message(conv.roles[1], None)
embs = self.get_context_emb(conv, img_list)
outputs = self.model.llama_model.generate(
@ -143,6 +143,7 @@ class Chat:
max_new_tokens=max_new_tokens,
stopping_criteria=self.stopping_criteria,
num_beams=num_beams,
do_sample=True,
min_length=min_length,
top_p=top_p,
repetition_penalty=repetition_penalty,

View File

@ -84,7 +84,8 @@ class MiniGPT4(Blip2Base):
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
self.llama_model = LlamaForCausalLM.from_pretrained(
llama_model, torch_dtype=torch.float16
llama_model, torch_dtype=torch.float16,
load_in_8bit=True, device_map="auto"
)
for name, param in self.llama_model.named_parameters():
param.requires_grad = False
@ -107,12 +108,17 @@ class MiniGPT4(Blip2Base):
self.prompt_list = []
def encode_img(self, image):
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
device = image.device
self.ln_vision.to("cpu")
self.ln_vision.float()
self.visual_encoder.to("cpu")
self.visual_encoder.float()
image = image.to("cpu")
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
with self.maybe_autocast():
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,