diff --git a/dataset/Evaluation.md b/dataset/Evaluation.md
new file mode 100644
index 0000000..34118f3
--- /dev/null
+++ b/dataset/Evaluation.md
@@ -0,0 +1,26 @@
+
+### OKVQA
+
+### GQA
+Images and question-answer pairs will be loaded during the evaluation.
+
+``` python run_eval.py xxxx ```
+
+### VSR
+Images and question-answer pairs will be loaded during the evaluation.
+
+``` python run_eval.py xxxx ```
+
+### IconVQA
+
+### VizWiz
+1. Download [`test.json`](https://vizwiz.cs.colorado.edu/VizWiz_final/vqa_data/Annotations.zip) and extract [`test.zip`](https://vizwiz.cs.colorado.edu/VizWiz_final/images/test.zip) to `test`. Put them under `your_path/vizwiz`.
+2. Single-GPU inference.
+``` python run_eval.py xxxx ```
+
+### HM
+
+
+
+
+
diff --git a/dataset/README_MINIGPTv2_FINETUNE.md b/dataset/README_MINIGPTv2_FINETUNE.md
index 2d5c825..f7af60d 100644
--- a/dataset/README_MINIGPTv2_FINETUNE.md
+++ b/dataset/README_MINIGPTv2_FINETUNE.md
@@ -1,133 +1,94 @@
## Download the COCO captions, RefCOCO, RefCOCO+. RefCOCOg, visual genome, textcaps, LLaVA, gqa, AOK-VQA, OK-VQA, OCR-VQA, filtered Flickr-30k, multi-task conversation, and Unnatural instruction datasets
+
### COCO captions
+- [train2017](http://images.cocodataset.org/zips/train2017.zip)
-### RefCOCO, RefCOCO+, RefCOCOg
-
### Visual genome
+- [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
-### textcaps
+### TextCaps
+
+- [TextCaps_0.1_train](https://dl.fbaipublicfiles.com/textvqa/data/textcaps/TextCaps_0.1_train.json)
+- [Images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
+
+### RefCOCO, RefCOCO+, RefCOCOg
+Make sure you have the COCO 2014 images first.
+
+Then,
+download RefCOCO, RefCOCO+, and RefCOCOg annotation files in the following links.
+
+- https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip
+- https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco+.zip
+- https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcocog.zip
+
+Unzip these files to the location you like. It should have the structure like the following
+
+```
+Location_you_like
+├── refcoco
+│ ├── instances.json
+│ ├── refs(google).p
+│ └── refs(unc).p
+├── refcoco+
+│ ├── instances.json
+│ └── refs(unc).p
+└── refcocog
+ ├── instances.json
+ ├── refs(google).p
+ └── refs(umd).p
+```
+
+Set **image_path** in all the following dataset configuration files to the COCO 2014 image folder.
+Similarly, set **ann_path** in all the following configs to the above folder (Location_you_like) that contains refcoco, refcoco+, and refcocog.
+
+- [minigpt4/configs/datasets/coco_bbox/refcoco.yaml](../minigpt4/configs/datasets/coco_bbox/refcoco.yaml)
+- [minigpt4/configs/datasets/coco_bbox/refcocog.yaml](../minigpt4/configs/datasets/coco_bbox/refcocog.yaml)
+- [minigpt4/configs/datasets/coco_bbox/refcocop.yaml](../minigpt4/configs/datasets/coco_bbox/refcocop.yaml)
+- [minigpt4/configs/datasets/coco_bbox/invrefcoco.yaml](../minigpt4/configs/datasets/coco_bbox/invrefcoco.yaml)
+- [minigpt4/configs/datasets/coco_bbox/invrefcocog.yaml](../minigpt4/configs/datasets/coco_bbox/invrefcocog.yaml)
+- [minigpt4/configs/datasets/coco_bbox/invrefcocop.yaml](../minigpt4/configs/datasets/coco_bbox/invrefcocop.yaml)
### LLaVA
+Makesure you have the COCO 2014 images first.
+
+Download Llava annotation files in the following link to the place you like.
+
+- https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/conversation_58k.json
+- https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/detail_23k.json
+- https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/complex_reasoning_77k.json
+
+Set **image_path** in all the following dataset configuration files to the COCO 2014 image folder.
+Similarly, set **ann_path** to the location of the previous downloaded conversation_58k.json,
+detail_23k.json, and complex_reasoning_77k.json in conversation.yaml, detail.yaml, and reason.yaml, respectively.
+
+
+- [minigpt4/configs/datasets/llava/conversation.yaml](../minigpt4/configs/datasets/llava/conversation.yaml)
+- [minigpt4/configs/datasets/llava/detail.yaml](../minigpt4/configs/datasets/llava/detail.yaml)
+- [minigpt4/configs/datasets/llava/reason.yaml](../minigpt4/configs/datasets/llava/reason.yaml)
-### gqa
### OKVQA
+- [OK-VQA Input Questions](https://okvqa.allenai.org/static/data/OpenEnded_mscoco_train2014_questions.json.zip)
+- [OK-VQA Annotations](https://okvqa.allenai.org/static/data/mscoco_train2014_annotations.json.zip)
+- [okvqa_train](https://storage.googleapis.com/sfr-vision-language-research/LAVIS/datasets/okvqa/okvqa_train.json)
+- Images are from COCO
+
### AOK-VQA
+```
+export AOKVQA_DIR=YOUR_DATASET_PATH
+mkdir -p ${AOKVQA_DIR}
+curl -fsSL https://prior-datasets.s3.us-east-2.amazonaws.com/aokvqa/aokvqa_v1p0.tar.gz | tar xvz -C ${AOKVQA_DIR}
+```
+
### OCR-VQA
+- [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing), **we save all files as `.jpg`**
### filtered Flickr-30k
### Multi-task conversation
### Unnatural instruction
-
-
-
-
-
-
-
-
-
-
-
-
-
-### Pre-training datasets download:
-We use the filtered synthetic captions prepared by BLIP. For more details about the dataset, please refer to [BLIP](https://github.com/salesforce/BLIP).
-
-It requires ~2.3T to store LAION and CC3M+CC12M+SBU datasets
-
-Image source | Filtered synthetic caption by ViT-L
---- | :---:
-CC3M+CC12M+SBU | Download
-LAION115M | Download
-
-This will download two json files
-```
-ccs_synthetic_filtered_large.json
-laion_synthetic_filtered_large.json
-```
-
-## prepare the data step-by-step
-
-
-### setup the dataset folder and move the annotation file to the data storage folder
-```
-export MINIGPT4_DATASET=/YOUR/PATH/FOR/LARGE/DATASET/
-mkdir ${MINIGPT4_DATASET}/cc_sbu
-mkdir ${MINIGPT4_DATASET}/laion
-mv ccs_synthetic_filtered_large.json ${MINIGPT4_DATASET}/cc_sbu
-mv laion_synthetic_filtered_large.json ${MINIGPT4_DATASET}/laion
-```
-
-### Convert the scripts to data storate folder
-```
-cp convert_cc_sbu.py ${MINIGPT4_DATASET}/cc_sbu
-cp download_cc_sbu.sh ${MINIGPT4_DATASET}/cc_sbu
-cp convert_laion.py ${MINIGPT4_DATASET}/laion
-cp download_laion.sh ${MINIGPT4_DATASET}/laion
-```
-
-
-### Convert the laion and cc_sbu annotation file format to be img2dataset format
-```
-cd ${MINIGPT4_DATASET}/cc_sbu
-python convert_cc_sbu.py
-
-cd ${MINIGPT4_DATASET}/laion
-python convert_laion.py
-```
-
-### Download the datasets with img2dataset
-```
-cd ${MINIGPT4_DATASET}/cc_sbu
-sh download_cc_sbu.sh
-cd ${MINIGPT4_DATASET}/laion
-sh download_laion.sh
-```
-
-
-The final dataset structure
-
-```
-.
-├── ${MINIGPT4_DATASET}
-│ ├── cc_sbu
-│ ├── convert_cc_sbu.py
-│ ├── download_cc_sbu.sh
-│ ├── ccs_synthetic_filtered_large.json
-│ ├── ccs_synthetic_filtered_large.tsv
-│ └── cc_sbu_dataset
-│ ├── 00000.tar
-│ ├── 00000.parquet
-│ ...
-│ ├── laion
-│ ├── convert_laion.py
-│ ├── download_laion.sh
-│ ├── laion_synthetic_filtered_large.json
-│ ├── laion_synthetic_filtered_large.tsv
-│ └── laion_dataset
-│ ├── 00000.tar
-│ ├── 00000.parquet
-│ ...
-...
-```
-
-
-## Set up the dataset configuration files
-
-Then, set up the LAION dataset loading path in
-[here](../minigpt4/configs/datasets/laion/defaults.yaml#L5) at Line 5 as
-${MINIGPT4_DATASET}/laion/laion_dataset/{00000..10488}.tar
-
-and the Conceptual Captoin and SBU datasets loading path in
-[here](../minigpt4/configs/datasets/cc_sbu/defaults.yaml#L5) at Line 5 as
-${MINIGPT4_DATASET}/cc_sbu/cc_sbu_dataset/{00000..01255}.tar
-
-
-
diff --git a/minigpt4/models/minigpt_base.py b/minigpt4/models/minigpt_base.py
index b5dd9d4..cd051ec 100644
--- a/minigpt4/models/minigpt_base.py
+++ b/minigpt4/models/minigpt_base.py
@@ -178,7 +178,6 @@ class MiniGPTBase(BaseModel):
answers = [self.llama_tokenizer(a + self.end_sym,
return_tensors="pt",
add_special_tokens=False).to(self.device) for a in answers]
-
cur_id = []
cur_target = []
for i in range(len(questions)):
@@ -226,8 +225,6 @@ class MiniGPTBase(BaseModel):
conv_q = [[self.prompt_template.format(item) for item in items] for items in conv_q]
-
-
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, [q[0] for q in conv_q])
regress_token_ids, regress_atts, part_targets = self.tokenize_conversation(conv_q, conv_a)
diff --git a/minigpt4/models/modeling_llama.py b/minigpt4/models/modeling_llama.py
index 6d28020..5d59a53 100644
--- a/minigpt4/models/modeling_llama.py
+++ b/minigpt4/models/modeling_llama.py
@@ -75,7 +75,7 @@ class LlamaForCausalLM(LlamaForCausalLMOrig):
)
hidden_states = outputs[0]
- if self.config.pretraining_tp > 1:
+ if hasattr(self.config, 'pretraining_tp') and self.config.pretraining_tp > 1:
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
logits = torch.cat(logits, dim=-1)
diff --git a/train.py b/train.py
index 072a078..0013079 100644
--- a/train.py
+++ b/train.py
@@ -12,6 +12,7 @@ import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
+import wandb
import minigpt4.tasks as tasks
from minigpt4.common.config import Config
@@ -30,7 +31,6 @@ from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *
-import wandb
def parse_args():
@@ -44,12 +44,10 @@ def parse_args():
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
- parser.add_argument("--wandb_log", default=False)
- parser.add_argument("--job_name",default="minigpt_v2",type=str)
+ parser.add_argument("--job_name", default="minigpt_v2",type=str)
args = parser.parse_args()
-
return args
@@ -80,16 +78,13 @@ def main():
# set before init_distributed_mode() to ensure the same job_id shared across all ranks.
job_id = now()
args = parse_args()
-
- cfg = Config(parse_args())
+ cfg = Config(args)
init_distributed_mode(cfg.run_cfg)
-
setup_seeds(cfg)
# set after init_distributed_mode() to only log on master.
setup_logger()
-
cfg.pretty_print()
task = tasks.setup_task(cfg)
@@ -98,10 +93,9 @@ def main():
if cfg.run_cfg.wandb_log:
wandb.login()
- wandb.init(project="minigptv2",name=args.job_name)
+ wandb.init(project="minigptv", name=cfg.run_cfg.job_name)
wandb.watch(model)
-
runner = get_runner_class(cfg)(
cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets
)
diff --git a/train_configs/minigpt4_llama2_stage1_pretrain.yaml b/train_configs/minigpt4_llama2_stage1_pretrain.yaml
index c13d31f..bcc458e 100644
--- a/train_configs/minigpt4_llama2_stage1_pretrain.yaml
+++ b/train_configs/minigpt4_llama2_stage1_pretrain.yaml
@@ -52,4 +52,7 @@ run:
device: "cuda"
world_size: 1
dist_url: "env://"
- distributed: True
\ No newline at end of file
+ distributed: True
+
+ wandb_log: True
+ job_name: minigpt4_llama2_pretrain
\ No newline at end of file
diff --git a/train_configs/minigpt4_llama2_stage2_finetune.yaml b/train_configs/minigpt4_llama2_stage2_finetune.yaml
index 8c138ae..29b5358 100644
--- a/train_configs/minigpt4_llama2_stage2_finetune.yaml
+++ b/train_configs/minigpt4_llama2_stage2_finetune.yaml
@@ -46,4 +46,7 @@ run:
device: "cuda"
world_size: 1
dist_url: "env://"
- distributed: True
\ No newline at end of file
+ distributed: True
+
+ wandb_log: True
+ job_name: minigpt4_llama2_finetune
\ No newline at end of file
diff --git a/train_configs/minigpt4_stage1_pretrain.yaml b/train_configs/minigpt4_stage1_pretrain.yaml
index ce8bc87..bd9a451 100644
--- a/train_configs/minigpt4_stage1_pretrain.yaml
+++ b/train_configs/minigpt4_stage1_pretrain.yaml
@@ -52,4 +52,7 @@ run:
device: "cuda"
world_size: 1
dist_url: "env://"
- distributed: True
\ No newline at end of file
+ distributed: True
+
+ wandb_log: True
+ job_name: minigpt4_pretrain
\ No newline at end of file
diff --git a/train_configs/minigpt4_stage2_finetune.yaml b/train_configs/minigpt4_stage2_finetune.yaml
index 531a3a0..89d1100 100644
--- a/train_configs/minigpt4_stage2_finetune.yaml
+++ b/train_configs/minigpt4_stage2_finetune.yaml
@@ -46,4 +46,7 @@ run:
device: "cuda"
world_size: 1
dist_url: "env://"
- distributed: True
\ No newline at end of file
+ distributed: True
+
+ wandb_log: True
+ job_name: minigpt4_finetune
\ No newline at end of file
diff --git a/train_configs/minigpt_v2_finetune.yaml b/train_configs/minigpt_v2_finetune.yaml
index 7bf6bbf..4039ea6 100644
--- a/train_configs/minigpt_v2_finetune.yaml
+++ b/train_configs/minigpt_v2_finetune.yaml
@@ -276,7 +276,6 @@ run:
init_lr: 1e-5
min_lr: 8e-5
warmup_lr: 1e-6
- wandb_log: True
weight_decay: 0.05
max_epoch: 50
@@ -296,4 +295,7 @@ run:
device: "cuda"
world_size: 1
dist_url: "env://"
- distributed: True
\ No newline at end of file
+ distributed: True
+
+ wandb_log: True
+ job_name: minigptv2_finetune
\ No newline at end of file