now can run on mac m2

This commit is contained in:
wacdev 2023-04-30 13:10:29 +08:00
parent c6acff2d8d
commit 407cb8420a
No known key found for this signature in database
GPG Key ID: 5473A7C3DEAFC58D
7 changed files with 135 additions and 53 deletions

3
.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
.DS_Store
__pycache__/
model/

View File

@ -5,17 +5,14 @@
<a href='https://minigpt-4.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://arxiv.org/abs/2304.10592'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> <a href='https://huggingface.co/spaces/Vision-CAIR/minigpt4'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a> <a href='https://huggingface.co/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a> [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1OK4kYsZphwt5DXchKkzMBjYF6jnkqh4R?usp=sharing) [![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://www.youtube.com/watch?v=__tftoxpBAw&feature=youtu.be)
## News
We now provide a pretrained MiniGPT-4 aligned with Vicuna-7B! The demo GPU memory consumption now can be as low as 12GB.
## Online Demo
Click the image to chat with MiniGPT-4 around your images
[![demo](figs/online_demo.png)](https://minigpt-4.github.io)
## Examples
| | |
:-------------------------:|:-------------------------:
@ -24,8 +21,6 @@ Click the image to chat with MiniGPT-4 around your images
More examples can be found in the [project page](https://minigpt-4.github.io).
## Introduction
- MiniGPT-4 aligns a frozen visual encoder from BLIP-2 with a frozen LLM, Vicuna, using just one projection layer.
- We train MiniGPT-4 with two stages. The first traditional pretraining stage is trained using roughly 5 million aligned image-text pairs in 10 hours using 4 A100s. After the first stage, Vicuna is able to understand the image. But the generation ability of Vicuna is heavilly impacted.
@ -33,10 +28,8 @@ More examples can be found in the [project page](https://minigpt-4.github.io).
- The second finetuning stage is trained on this dataset in a conversation template to significantly improve its generation reliability and overall usability. To our surprise, this stage is computationally efficient and takes only around 7 minutes with a single A100.
- MiniGPT-4 yields many emerging vision-language capabilities similar to those demonstrated in GPT-4.
![overview](figs/overview.png)
## Getting Started
### Installation
@ -51,7 +44,6 @@ conda env create -f environment.yml
conda activate minigpt4
```
**2. Prepare the pretrained Vicuna weights**
The current version of MiniGPT-4 is built on the v0 versoin of Vicuna-13B.
@ -79,12 +71,9 @@ Download the pretrained checkpoints according to the Vicuna model you prepare.
:------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:
[Downlad](https://drive.google.com/file/d/1a4zLvaiDBr-36pasffmgpvH5P7CKmpze/view?usp=share_link) | [Download](https://drive.google.com/file/d/1RY9jV0dyqLX-o38LrumkKRh6Jtaop58R/view?usp=sharing)
Then, set the path to the pretrained checkpoint in the evaluation config file
in [eval_configs/minigpt4_eval.yaml](eval_configs/minigpt4_eval.yaml#L10) at Line 11.
### Launching Demo Locally
Try out our demo [demo.py](demo.py) on your local machine by running
@ -101,7 +90,6 @@ in 16 bit by setting low_resource to False in the config file
Thanks [@WangRongsheng](https://github.com/WangRongsheng), you can also run our code on [Colab](https://colab.research.google.com/drive/1OK4kYsZphwt5DXchKkzMBjYF6jnkqh4R?usp=sharing)
### Training
The training of MiniGPT-4 contains two alignment stages.
@ -124,7 +112,6 @@ A MiniGPT-4 checkpoint with only stage one training can be downloaded
[here (13B)](https://drive.google.com/file/d/1u9FRRBB3VovP1HxCAlpD9Lw4t4P6-Yq8/view?usp=share_link) or [here (7B)](https://drive.google.com/file/d/1HihQtCEXUyBM1i9DQbaK934wW3TZi-h5/view?usp=share_link).
Compared to the model after stage two, this checkpoint generate incomplete and repeated sentences frequently.
**2. Second finetuning stage**
In the second stage, we use a small high quality image-text pair dataset created by ourselves
@ -143,8 +130,11 @@ torchrun --nproc-per-node NUM_GPU train.py --cfg-path train_configs/minigpt4_sta
After the second stage alignment, MiniGPT-4 is able to talk about the image coherently and user-friendly.
## Run on Mac
```
pip install -r requirements.txt
```
## Acknowledgement
@ -152,7 +142,6 @@ After the second stage alignment, MiniGPT-4 is able to talk about the image cohe
+ [Lavis](https://github.com/salesforce/LAVIS) This repository is built upon Lavis!
+ [Vicuna](https://github.com/lm-sys/FastChat) The fantastic language ability of Vicuna with only 13B parameters is just amazing. And it is open-source!
If you're using MiniGPT-4 in your research or applications, please cite using this BibTeX:
```bibtex
@misc{zhu2022minigpt4,
@ -163,7 +152,6 @@ If you're using MiniGPT-4 in your research or applications, please cite using th
}
```
## License
This repository is under [BSD 3-Clause License](LICENSE.md).
Many codes are based on [Lavis](https://github.com/salesforce/LAVIS) with

View File

@ -19,6 +19,7 @@ from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *
CUDA = torch.cuda.is_available()
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
@ -57,11 +58,13 @@ cfg = Config(args)
model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
GPU = 'cuda:{}'.format(args.gpu_id) if CUDA else None
model = model_cls.from_config(model_config).to(GPU)
model = torch.compile(model)
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
chat = Chat(model, vis_processor, device=GPU)
print('Initialization Finished')
# ========================================

View File

@ -4,13 +4,13 @@ channels:
- defaults
- anaconda
dependencies:
- python=3.9
- python=3.10
- cudatoolkit
- pip
- pytorch=1.12.1
- pytorch=2.0.0
- pytorch-mutex=1.0=cuda
- torchaudio=0.12.1
- torchvision=0.13.1
- torchvision=0.15.1
- pip:
- accelerate==0.16.0
- aiohttp==3.8.4

View File

@ -13,7 +13,7 @@ model:
num_query_token: 32
# Vicuna
llama_model: "/path/to/vicuna/weights/"
llama_model: './model/vicuna-13b' # /path/to/vicuna/weights/
# generation configs
prompt: ""

View File

@ -10,6 +10,7 @@ from minigpt4.models.blip2 import Blip2Base, disabled_train
from minigpt4.models.modeling_llama import LlamaForCausalLM
from transformers import LlamaTokenizer
CUDA = torch.cuda.is_available()
@registry.register_model("mini_gpt4")
class MiniGPT4(Blip2Base):
@ -86,17 +87,19 @@ class MiniGPT4(Blip2Base):
self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False)
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
torch_dtype = torch.float16 if CUDA else torch.float32
if self.low_resource:
self.llama_model = LlamaForCausalLM.from_pretrained(
llama_model,
torch_dtype=torch.float16,
load_in_8bit=True,
device_map={'': device_8bit}
torch_dtype=torch_dtype,
load_in_8bit=CUDA,
offload_folder="model/offload",
device_map={'': device_8bit} if CUDA else 'auto'
)
else:
self.llama_model = LlamaForCausalLM.from_pretrained(
llama_model,
torch_dtype=torch.float16,
torch_dtype=torch_dtype,
)
for name, param in self.llama_model.named_parameters():

85
requirements.txt Normal file
View File

@ -0,0 +1,85 @@
accelerate==0.18.0
aiofiles==23.1.0
aiohttp==3.8.4
aiosignal==1.3.1
altair==4.2.2
antlr4-python3-runtime==4.9.3
anyio==3.6.2
async-timeout==4.0.2
attrs==23.1.0
bitsandbytes==0.38.1
braceexpand==0.1.7
certifi==2022.12.7
charset-normalizer==3.1.0
click==8.1.3
contourpy==1.0.7
cycler==0.11.0
entrypoints==0.4
eva-decord==0.6.1
fastapi==0.95.1
ffmpy==0.3.0
filelock==3.12.0
fonttools==4.39.3
frozenlist==1.3.3
fsspec==2023.4.0
gradio==3.28.1
gradio_client==0.1.4
h11==0.14.0
httpcore==0.17.0
httpx==0.24.0
huggingface-hub==0.14.1
idna==3.4
iopath==0.1.10
Jinja2==3.1.2
jsonschema==4.17.3
kiwisolver==1.4.4
linkify-it-py==2.0.0
markdown-it-py==2.2.0
MarkupSafe==2.1.2
matplotlib==3.7.1
mdit-py-plugins==0.3.3
mdurl==0.1.2
mpmath==1.3.0
multidict==6.0.4
networkx==3.1
numpy==1.24.3
omegaconf==2.3.0
opencv-python==4.7.0.72
orjson==3.8.11
packaging==23.1
pandas==2.0.1
Pillow==9.5.0
portalocker==2.7.0
psutil==5.9.5
pydantic==1.10.7
pydub==0.25.1
pyparsing==3.0.9
pyrsistent==0.19.3
python-dateutil==2.8.2
python-multipart==0.0.6
pytz==2023.3
PyYAML==6.0
regex==2023.3.23
requests==2.29.0
semantic-version==2.10.0
sentencepiece==0.1.98
six==1.16.0
sniffio==1.3.0
socksio==1.0.0
starlette==0.26.1
sympy==1.11.1
timm==0.6.13
tokenizers==0.13.3
toolz==0.12.0
torch==2.0.0
torchvision==0.15.1
tqdm==4.65.0
transformers==4.28.1
typing_extensions==4.5.0
tzdata==2023.3
uc-micro-py==1.0.1
urllib3==1.26.15
uvicorn==0.22.0
webdataset==0.2.48
websockets==11.0.2
yarl==1.9.2