mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-04 18:10:47 +00:00
0401 cls cross/route/gate/route (universal)
This commit is contained in:
parent
2057032a63
commit
4631c70d76
@ -89,8 +89,8 @@ class AOKVQADataset(VQADataset, __DisplMixin):
|
||||
return {
|
||||
"image": data['image'],
|
||||
"image_id": data["image_id"],
|
||||
# "q_input": q_input,
|
||||
"q_input": llm_input,
|
||||
"q_input": q_input,
|
||||
# "q_input": llm_input,
|
||||
"llm_input": llm_input,
|
||||
"text_input": question,
|
||||
"text_output": answer,
|
||||
@ -164,8 +164,8 @@ class AOKVQAEvalDataset(VQAEvalDataset, __DisplMixin):
|
||||
"correct_choice_idx": correct_choice_idx_list,
|
||||
"direct_answers": direct_answers_list,
|
||||
"llm_input": llm_input_list,
|
||||
"q_input": llm_input_list,
|
||||
# "q_input": q_input_list,
|
||||
# "q_input": llm_input_list,
|
||||
"q_input": q_input_list,
|
||||
"gt_answers": gt_answers_list,
|
||||
"source": source_list,
|
||||
}
|
||||
@ -208,13 +208,13 @@ class AOKVQAEvalDataset(VQAEvalDataset, __DisplMixin):
|
||||
correct_choice_idx = None
|
||||
correct_answer = direct_answers
|
||||
|
||||
llm_input = ann.get("llm_input",random.choice(self.instruction_pool).format(question))
|
||||
llm_input = ann.get("llm_input",random.choice(self.instruction_pool).format(question, ", ".join(choices)))
|
||||
# llm_input = random.choice(self.instruction_pool).format(question, ", ".join(choices))
|
||||
|
||||
return {
|
||||
"image": image,
|
||||
# "q_input": question,
|
||||
"q_input": llm_input,
|
||||
"q_input": question,
|
||||
# "q_input": llm_input,
|
||||
"llm_input": llm_input,
|
||||
"text_input": question,
|
||||
"question_id": ann["question_id"],
|
||||
|
@ -96,8 +96,8 @@ class COCOVQADataset(VQADataset, __DisplMixin):
|
||||
"image": data['image'],
|
||||
"image_id": data["image_id"],
|
||||
"question_id": data["question_id"],
|
||||
# "q_input": q_input,
|
||||
"q_input": llm_input,
|
||||
"q_input": q_input,
|
||||
# "q_input": llm_input,
|
||||
"llm_input": llm_input,
|
||||
"text_input": question,
|
||||
"text_output": answer,
|
||||
@ -181,7 +181,7 @@ class COCOVQAEvalDataset(VQAEvalDataset, __DisplMixin):
|
||||
"question_id": ann["question_id"],
|
||||
# "instance_id": ann["instance_id"],
|
||||
# "question": question,
|
||||
"q_input": llm_input,
|
||||
# "q_input": llm_input,
|
||||
"q_input": q_input,
|
||||
"llm_input": llm_input,
|
||||
"text_input": question,
|
||||
|
@ -75,8 +75,8 @@ class GQADataset(VQADataset, __DisplMixin):
|
||||
# "text_output": ann["fullAnswer"],
|
||||
"text_output": answers,
|
||||
# "instruction_input": instruction,
|
||||
"q_input": llm_input,
|
||||
# "q_input": q_input,
|
||||
# "q_input": llm_input,
|
||||
"q_input": q_input,
|
||||
"llm_input": llm_input,
|
||||
"gt_answers": answers,
|
||||
"source": "gqa",
|
||||
@ -150,8 +150,8 @@ class GQAEvalDataset(VQAEvalDataset, __DisplMixin):
|
||||
"gt_answers": answer,
|
||||
"fullAnswer": fullAnswer,
|
||||
"text_output": answer,
|
||||
# "q_input": q_input,
|
||||
"q_input": llm_input,
|
||||
"q_input": q_input,
|
||||
# "q_input": llm_input,
|
||||
"llm_input": llm_input,
|
||||
"question_id": ann["question_id"],
|
||||
# "instance_id": ann["instance_id"],
|
||||
|
@ -98,8 +98,8 @@ class OKVQADataset(VQADataset, __DisplMixin):
|
||||
"image_id": data["image_id"],
|
||||
"question_id": data["question_id"],
|
||||
# "instruction_input": instruction,
|
||||
"q_input": llm_input,
|
||||
# "q_input": q_input,
|
||||
# "q_input": llm_input,
|
||||
"q_input": q_input,
|
||||
"llm_input": llm_input,
|
||||
"text_input": question,
|
||||
"text_output": answer,
|
||||
@ -181,8 +181,8 @@ class OKVQAEvalDataset(VQAEvalDataset, __DisplMixin):
|
||||
'image_path': image_path,
|
||||
"question_id": ann["question_id"],
|
||||
"question": question,
|
||||
# "q_input": q_input,
|
||||
"q_input": llm_input,
|
||||
"q_input": q_input,
|
||||
# "q_input": llm_input,
|
||||
"llm_input": llm_input,
|
||||
"text_input": question,
|
||||
"source": 'okvqa',
|
||||
|
@ -29,10 +29,21 @@ def list_of_str(arg):
|
||||
|
||||
def eval_parser():
|
||||
parser = argparse.ArgumentParser(description="Demo")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
default=0,
|
||||
help="device to run the model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cfg-path",
|
||||
default="/mnt/pfs-guan-ssai/nlu/wanghanzi/multimodal/PromptMoE/minigpt4/projects/qformer_moe_vicuna/eval/vqa_benchmark_evaluation.yaml",
|
||||
help="path to configuration file.")
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
default=['vizwiz','hm'],
|
||||
type=list_of_str,
|
||||
help="dataset to evaluate",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--options",
|
||||
nargs="+",
|
||||
@ -58,7 +69,6 @@ def init_model(cfg, device):
|
||||
model_cls = registry.get_model_class(model_config.arch)
|
||||
model = model_cls.from_config(model_config).to(device)
|
||||
|
||||
# import pudb; pudb.set_trace()
|
||||
key = list(cfg.datasets_cfg.keys())[0]
|
||||
vis_processor_cfg = cfg.datasets_cfg.get(key).vis_processor.train
|
||||
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
|
||||
@ -68,13 +78,12 @@ def init_model(cfg, device):
|
||||
return model, vis_processor, text_processor
|
||||
|
||||
parser = eval_parser()
|
||||
parser.add_argument("--dataset", type=list_of_str, default=['vizwiz','hm'], help="dataset to evaluate")
|
||||
args = parser.parse_args()
|
||||
cfg = Config(args)
|
||||
setup_seeds(cfg)
|
||||
print(cfg._convert_node_to_json(cfg.config))
|
||||
setup_logger()
|
||||
device = torch.device("cuda:5" if torch.cuda.is_available() else "cpu")
|
||||
device = torch.device("cuda:{}".format(args.device) if torch.cuda.is_available() else "cpu")
|
||||
|
||||
model, vis_processor, _ = init_model(cfg, device)
|
||||
model.eval()
|
||||
|
@ -530,7 +530,7 @@ class BertLayer(nn.Module):
|
||||
self.seq_len_dim,
|
||||
attention_output[:, query_length:, :],
|
||||
)
|
||||
cls_hidden = layer_output_text[0][:, 0, :] # [bz, hidden_size]
|
||||
cls_hidden = layer_output_text[:, 0, :] # [bz, hidden_size]
|
||||
|
||||
# add moe query ffn
|
||||
moe_ffn_attention_input = query_attention_output[:, :query_length, :] # [bz, query_length+seq_len, 768]
|
||||
|
@ -524,7 +524,7 @@ class BertLayer(nn.Module):
|
||||
self.seq_len_dim,
|
||||
attention_output[:, query_length:, :],
|
||||
)
|
||||
cls_hidden = layer_output_text[0][:, 0, :] # [bz, hidden_size]
|
||||
cls_hidden = layer_output_text[:, 0, :] # [bz, hidden_size]
|
||||
|
||||
# add moe query ffn
|
||||
moe_ffn_attention_input = query_attention_output[:, :query_length, :] # [bz, query_length+seq_len, 768]
|
||||
|
@ -524,7 +524,7 @@ class BertLayer(nn.Module):
|
||||
self.seq_len_dim,
|
||||
attention_output[:, query_length:, :],
|
||||
)
|
||||
cls_hidden = layer_output_text[0][:, 0, :] # [bz, hidden_size]
|
||||
cls_hidden = layer_output_text[:, 0, :] # [bz, hidden_size]
|
||||
|
||||
# add moe query ffn
|
||||
# query_attention_output size: [bz, query_length+seq_len, 768]
|
||||
|
@ -531,7 +531,7 @@ class BertLayer(nn.Module):
|
||||
self.seq_len_dim,
|
||||
attention_output[:, query_length:, :],
|
||||
)
|
||||
cls_hidden = layer_output_text[0][:, 0, :] # [bz, hidden_size]
|
||||
cls_hidden = layer_output_text[:, 0, :] # [bz, hidden_size]
|
||||
|
||||
# add moe query ffn
|
||||
# query_attention_output size: [bz, query_length+seq_len, 768]
|
||||
|
@ -22,7 +22,7 @@ class UniRouteMoELayer(nn.Module):
|
||||
self.route_method = route_method
|
||||
if self.route_method == "pre-route-uni":
|
||||
self.gate = nn.Linear(hidden_size, num_experts, bias=False).float()
|
||||
elif self.route_method in ["post-route-uni"]:
|
||||
elif self.route_method in ["post-route-uni",'uni-cls-route', 'uni-cls-query-route', 'uni-cls-cross-route']:
|
||||
gate = nn.Linear(hidden_size, 1, bias=False).float()
|
||||
self.gate = gate
|
||||
|
||||
@ -38,7 +38,7 @@ class UniRouteMoELayer(nn.Module):
|
||||
|
||||
|
||||
def beam_search(self, current_scores_log, beam_scores, expert_route, batch_size):
|
||||
if self.layer_judge=='first' and self.route_method in ['pre-route-uni', 'post-route-uni']:
|
||||
if self.layer_judge=='first' and self.route_method in ['pre-route-uni', 'post-route-uni','uni-cls-route', 'uni-cls-query-route', 'uni-cls-cross-route']:
|
||||
# current_scores_log torch.Size([bz, num_experts-1])
|
||||
assert beam_scores==None and expert_route==None
|
||||
current_scores = torch.exp(current_scores_log)
|
||||
@ -143,7 +143,32 @@ class UniRouteMoELayer(nn.Module):
|
||||
# import pdb;pdb.set_trace()
|
||||
return candidate_output, beam_scores, expert_route, beam_idx, importance_loss
|
||||
|
||||
def forward_post_route_uni(self, x, beam_scores, expert_route, use_log=True):
|
||||
|
||||
def calculate_cls_gate_score(self, cls_hidden, output_x):
|
||||
|
||||
if self.route_method == 'uni-cls-route':
|
||||
# cls_hidden = [bz, 768]
|
||||
gate_score = self.gate(cls_hidden) # bz, 1
|
||||
elif self.route_method == 'uni-cls-query-route': # add cls_hiddin on query_token mean pool hidden
|
||||
mean_output = torch.mean(output_x, dim=1) # bz, 768
|
||||
gate_score = self.gate(mean_output+cls_hidden) # bz, 1
|
||||
elif self.route_method == 'uni-cls-cross-route':
|
||||
# cls_hidden as Q, output_x as K, V calculate scaled dot-product attention between Q and K and V
|
||||
# cls_hidden: bz, 768
|
||||
# output_x: bz, 32, 768
|
||||
Q = cls_hidden.unsqueeze(1) # bz, 1, 768
|
||||
K = output_x # bz, 32, 768
|
||||
V = output_x # bz, 32, 768
|
||||
# scaled dot-product attention
|
||||
QK = torch.matmul(Q, K.transpose(-1, -2)) / (K.size(-1) ** 0.5) # bz, 1, 32
|
||||
QK = F.softmax(QK, dim=-1) # bz, 1, 32
|
||||
gate_score = torch.matmul(QK, V) # bz, 1, 768
|
||||
gate_score = gate_score.squeeze(1) # bz, 768
|
||||
gate_score = self.gate(gate_score) # bz, 1
|
||||
return gate_score
|
||||
|
||||
|
||||
def forward_route_uni(self, x, beam_scores, expert_route, use_log=True, cls_hidden=None):
|
||||
|
||||
if beam_scores == None:
|
||||
batch_size = x.shape[0]
|
||||
@ -155,8 +180,6 @@ class UniRouteMoELayer(nn.Module):
|
||||
x_masked, x_uniexpert = x[select_expert],x[select_universal]
|
||||
num_tokens = x.shape[1]
|
||||
|
||||
import pdb; pdb.set_trace()
|
||||
|
||||
def forward_expert(input_x, expert_idx):
|
||||
output_x = self.experts[expert_idx].forward(input_x)
|
||||
return output_x
|
||||
@ -168,8 +191,14 @@ class UniRouteMoELayer(nn.Module):
|
||||
logits_gate_lst = list()
|
||||
for expert_idx in range(self.num_route_experts): # num_expert-1
|
||||
output_x = forward_expert(x_masked, expert_idx)
|
||||
output_x_aver = torch.mean(output_x, dim=1)
|
||||
gate_score = self.gate(output_x_aver)
|
||||
|
||||
if self.route_method == 'post-route-uni':
|
||||
output_x_aver = torch.mean(output_x, dim=1)
|
||||
gate_score = self.gate(output_x_aver)
|
||||
|
||||
elif self.route_method in ['uni-cls-route', 'uni-cls-query-route', 'uni-cls-cross-route'] and cls_hidden is not None:
|
||||
gate_score = self.calculate_cls_gate_score(cls_hidden, output_x)
|
||||
|
||||
logits_gate_lst.append(gate_score)
|
||||
outputs.append(output_x.unsqueeze(0))
|
||||
|
||||
@ -186,14 +215,12 @@ class UniRouteMoELayer(nn.Module):
|
||||
# beam_scores torch.Size([bz*(num_beam-1)]), expert_route torch.Size([bz*(num_beam-1), layer_n])
|
||||
current_select_expert = expert_route[:,-1] # torch.Size([bz*(num_beam-1)])
|
||||
|
||||
import pdb; pdb.set_trace()
|
||||
if self.layer_judge == 'first':
|
||||
replicated_tensor = candidate_output_raw.unsqueeze(2).expand(self.num_route_experts, batch_size, self.num_route_beam, num_tokens, self.hidden_size)
|
||||
candidate_output_raw = replicated_tensor.contiguous().view(self.num_route_experts, -1, num_tokens, self.hidden_size) # [bz*num_beams, 32,768]
|
||||
current_scores_t = current_scores.unsqueeze(1).expand(batch_size, self.num_route_beam, self.num_route_experts)
|
||||
current_scores = current_scores_t.contiguous().view(-1, self.num_route_experts) # [bz*(num_beams-1), num_experts-1]
|
||||
|
||||
import pdb; pdb.set_trace()
|
||||
candidate_output = candidate_output_raw.permute(1, 0, 2, 3)[beam_idx] # torch.Size([8, 2, 32, 768])
|
||||
expert_select_matrix = F.one_hot(current_select_expert, self.num_route_experts)
|
||||
if self.weight_type == 'ffn_prob':
|
||||
@ -203,8 +230,6 @@ class UniRouteMoELayer(nn.Module):
|
||||
output = candidate_output * expert_select_matrix.unsqueeze(-1).unsqueeze(-1)
|
||||
experts_output = torch.sum(output, dim=1) # [bz*num_beams-1, 32, 768]
|
||||
|
||||
import pdb; pdb.set_trace()
|
||||
|
||||
####################
|
||||
### universal expert
|
||||
####################
|
||||
@ -220,26 +245,26 @@ class UniRouteMoELayer(nn.Module):
|
||||
output.append(combine_tmp)
|
||||
final_output = torch.cat(output) # [bz*num_beam, 32 ,768]
|
||||
|
||||
import pdb; pdb.set_trace()
|
||||
# import pdb; pdb.set_trace()
|
||||
|
||||
return final_output, beam_scores, expert_route, beam_idx, importance_loss
|
||||
|
||||
def forward(self, x, attention_mask, beam_scores, expert_route, use_log=True):
|
||||
def forward(self, x, attention_mask, beam_scores, expert_route, cls_hidden):
|
||||
"""
|
||||
if first_layer: x [bz, 32, 768]
|
||||
else: x [bz*num_beams, 32, 768]
|
||||
"""
|
||||
if self.route_method == 'pre-route-uni':
|
||||
candidate_output, beam_scores, expert_route, beam_idx, importance_loss = self.forward_pre_route(x, beam_scores, expert_route, use_log=True)
|
||||
elif self.route_method in ['post-route-uni']:
|
||||
candidate_output, beam_scores, expert_route, beam_idx, importance_loss = self.forward_post_route_uni(x, beam_scores, expert_route, use_log=True)
|
||||
elif self.route_method in ['post-route-uni', 'uni-cls-route', 'uni-cls-query-route', 'uni-cls-cross-route']:
|
||||
candidate_output, beam_scores, expert_route, beam_idx, importance_loss = self.forward_route_uni(x, beam_scores, expert_route, use_log=True, cls_hidden=cls_hidden)
|
||||
|
||||
import pdb;pdb.set_trace()
|
||||
return candidate_output, beam_scores, expert_route, beam_idx, importance_loss
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
import sys
|
||||
@ -305,7 +330,7 @@ if __name__ == '__main__':
|
||||
num_experts=config.moebert_expert_num,
|
||||
num_beams=config.moebert_num_beams,
|
||||
layer_judge = layer_judge,
|
||||
route_method = "post-route-uni",
|
||||
route_method = "uni-cls-cross-rout[e",
|
||||
weight_type="ffn_prob"
|
||||
)
|
||||
layer_output = experts_post(x2, None, beam_scores2, expert_route2, False)
|
||||
|
@ -19,9 +19,9 @@ class UniRouteMoELayer(nn.Module):
|
||||
self.weight_type = weight_type
|
||||
|
||||
self.route_method = route_method
|
||||
if self.route_method == "pre-route-uni":
|
||||
self.gate = nn.Linear(hidden_size, num_experts, bias=False).float()
|
||||
elif self.route_method in ["post-route-uni"]:
|
||||
if self.route_method in ['pre-route-uni', 'uni-cls-gate-route']:
|
||||
self.gate = nn.Linear(hidden_size, self.num_route_experts, bias=False).float()
|
||||
elif self.route_method in ["post-route-uni",'uni-cls-route', 'uni-cls-query-route', 'uni-cls-cross-route']:
|
||||
gate = nn.Linear(hidden_size, 1, bias=False).float()
|
||||
self.gate = gate
|
||||
|
||||
@ -35,9 +35,8 @@ class UniRouteMoELayer(nn.Module):
|
||||
# Compute coefficient of variation (i.e. std/mean) squared.
|
||||
return (std_importance_per_expert / mean_importance_per_expert)**2
|
||||
|
||||
|
||||
def beam_search(self, current_scores_log, beam_scores, expert_route, batch_size):
|
||||
if self.layer_judge=='first' and self.route_method in ['pre-route-uni', 'post-route-uni']:
|
||||
if self.layer_judge=='first' and self.route_method in ['pre-route-uni', 'post-route-uni','uni-cls-route', 'uni-cls-query-route', 'uni-cls-cross-route','uni-cls-gate-route']:
|
||||
# current_scores_log torch.Size([bz, num_experts-1])
|
||||
assert beam_scores==None and expert_route==None
|
||||
current_scores = torch.exp(current_scores_log)
|
||||
@ -80,7 +79,6 @@ class UniRouteMoELayer(nn.Module):
|
||||
|
||||
return beam_scores, expert_route, beam_idx
|
||||
|
||||
|
||||
def forward_gate(self, x):
|
||||
"""
|
||||
TODO: Pre forward gate
|
||||
@ -166,8 +164,16 @@ class UniRouteMoELayer(nn.Module):
|
||||
gate_score = self.gate(gate_score) # bz, 1
|
||||
return gate_score
|
||||
|
||||
def adjust_cls_hidden(self, cls_hidden, output_x):
|
||||
if cls_hidden.shape[0]/self.num_beams == output_x.shape[0]/self.num_route_beam:
|
||||
cls_hidden_lst = list()
|
||||
for i in range(cls_hidden.shape[0]):
|
||||
if i % self.num_beams != 0:
|
||||
cls_hidden_lst.append(cls_hidden[i,:])
|
||||
cls_hidden = torch.stack(cls_hidden_lst)
|
||||
return cls_hidden
|
||||
|
||||
def forward_route_uni(self, x, beam_scores, expert_route, use_log=True, cls_hidden=None):
|
||||
def forward_route_uni(self, x, beam_scores, expert_route, cls_hidden=None):
|
||||
|
||||
if beam_scores == None:
|
||||
batch_size = x.shape[0]
|
||||
@ -186,6 +192,9 @@ class UniRouteMoELayer(nn.Module):
|
||||
####################
|
||||
### route expert
|
||||
####################
|
||||
if cls_hidden is not None:
|
||||
cls_hidden = self.adjust_cls_hidden(cls_hidden, x_masked)
|
||||
|
||||
outputs = list()
|
||||
logits_gate_lst = list()
|
||||
for expert_idx in range(self.num_route_experts): # num_expert-1
|
||||
@ -194,20 +203,24 @@ class UniRouteMoELayer(nn.Module):
|
||||
if self.route_method == 'post-route-uni':
|
||||
output_x_aver = torch.mean(output_x, dim=1)
|
||||
gate_score = self.gate(output_x_aver)
|
||||
logits_gate_lst.append(gate_score)
|
||||
|
||||
elif self.route_method in ['uni-cls-route', 'uni-cls-query-route', 'uni-cls-cross-route'] and cls_hidden is not None:
|
||||
gate_score = self.calculate_cls_gate_score(cls_hidden, output_x)
|
||||
|
||||
logits_gate_lst.append(gate_score)
|
||||
logits_gate_lst.append(gate_score)
|
||||
outputs.append(output_x.unsqueeze(0))
|
||||
|
||||
candidate_output_raw = torch.cat(outputs) # torch.Size([num_expert-1, bz*(num_beam-1), 32, 768])
|
||||
logits_gate = torch.cat(logits_gate_lst,dim=1)# torch.Size([bz*(num_beam-1), num_expert-1])
|
||||
current_scores = F.softmax(logits_gate, dim=-1) # torch.Size([bz*(num_beam-1), num_expert-1])
|
||||
if use_log:
|
||||
current_scores_log = torch.log(current_scores) # 取log之后可以直接相加 torch.Size([bz*(num_beam-1), num_expert-1])
|
||||
|
||||
if self.route_method == 'uni-cls-gate-route':
|
||||
# universal expert with cls_hidden state into nn.Linear(768,num_experts-1)
|
||||
logits_gate = self.gate(cls_hidden)
|
||||
current_scores = F.softmax(logits_gate, dim=-1) # torch.Size([bz*(num_beam-1), num_expert-1])
|
||||
else:
|
||||
current_scores_log = current_scores
|
||||
logits_gate = torch.cat(logits_gate_lst,dim=1)# torch.Size([bz*(num_beam-1), num_expert-1])
|
||||
current_scores = F.softmax(logits_gate, dim=-1) # torch.Size([bz*(num_beam-1), num_expert-1])
|
||||
|
||||
current_scores_log = torch.log(current_scores) # 取log之后可以直接相加 torch.Size([bz*(num_beam-1), num_expert-1])
|
||||
|
||||
importance_loss = self._importance_auxiliary_loss(current_scores)
|
||||
beam_scores, expert_route, beam_idx = self.beam_search(current_scores_log, beam_scores, expert_route, current_scores_log.shape[0])
|
||||
@ -254,9 +267,9 @@ class UniRouteMoELayer(nn.Module):
|
||||
else: x [bz*num_beams, 32, 768]
|
||||
"""
|
||||
if self.route_method == 'pre-route-uni':
|
||||
candidate_output, beam_scores, expert_route, beam_idx, importance_loss = self.forward_pre_route(x, beam_scores, expert_route, use_log=True)
|
||||
elif self.route_method in ['post-route-uni', 'uni-cls-route', 'uni-cls-query-route', 'uni-cls-cross-route']:
|
||||
candidate_output, beam_scores, expert_route, beam_idx, importance_loss = self.forward_route_uni(x, beam_scores, expert_route, use_log=True, cls_hidden=cls_hidden)
|
||||
candidate_output, beam_scores, expert_route, beam_idx, importance_loss = self.forward_pre_route(x, beam_scores, expert_route)
|
||||
elif self.route_method in ['post-route-uni', 'uni-cls-route', 'uni-cls-query-route', 'uni-cls-cross-route','uni-cls-gate-route']:
|
||||
candidate_output, beam_scores, expert_route, beam_idx, importance_loss = self.forward_route_uni(x, beam_scores, expert_route, cls_hidden=cls_hidden)
|
||||
|
||||
return candidate_output, beam_scores, expert_route, beam_idx, importance_loss
|
||||
|
||||
|
@ -0,0 +1,143 @@
|
||||
# Copyright (c) 2022, salesforce.com, inc.
|
||||
# All rights reserved.
|
||||
# SPDX-License-Identifier: BSD-3-Clause
|
||||
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
|
||||
model:
|
||||
arch: blip2_vicuna_instruct
|
||||
model_type: vicuna7b_pretrain
|
||||
load_pretrained: True
|
||||
load_finetuned: True
|
||||
vit_model: eva_clip_g
|
||||
pretrained: "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/blip2/blip2_vicuna7b/blip2_pretrained_vicuna7b.pth"
|
||||
finetuned: "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Cross_Universal_lnout_lr5e5_4ex4b_2loss_001_top6layer_textinqf_10epo_0330/20240330222/checkpoint_7.pth"
|
||||
q_former_model: "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/blip2/blip2_vicuna7b/blip2_pretrained_vicuna7b.pth"
|
||||
|
||||
# vit encoder
|
||||
image_size: 224
|
||||
drop_path_rate: 0
|
||||
use_grad_checkpoint: False
|
||||
vit_precision: "fp16"
|
||||
|
||||
# Q-Former
|
||||
num_query_token: 32
|
||||
qformer_text_input: True
|
||||
|
||||
# vicuna
|
||||
llm_model: "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/vicuna-7b-v1.1"
|
||||
prompt: ""
|
||||
max_txt_len: 256
|
||||
max_output_txt_len: 256
|
||||
|
||||
# freeze
|
||||
freeze_vit: True
|
||||
freeze_llm: True
|
||||
freeze_qformer: False
|
||||
freeze_t5_proj: False
|
||||
|
||||
# moe
|
||||
general_version: 'uni_route_moe'
|
||||
moebert_route_method: 'uni-cls-cross-route'
|
||||
moebert_load_balance: 0.01
|
||||
moebert_expert_num: 4
|
||||
moebert_num_beams: 4
|
||||
moe_weight_type: 'ffn_prob'
|
||||
use_balance_loss: False
|
||||
ln_position: "out"
|
||||
|
||||
datasets:
|
||||
# gqa:
|
||||
# type: balanced_sft_raw_eval
|
||||
# batch_size: 32
|
||||
# vis_processor:
|
||||
# eval:
|
||||
# name: "blip2_image_eval"
|
||||
# image_size: 224
|
||||
# text_processor:
|
||||
# eval:
|
||||
# name: "blip_caption"
|
||||
|
||||
# coco_vqa: # 658104
|
||||
# type: vqa_v2_eval
|
||||
# batch_size: 32
|
||||
# vis_processor:
|
||||
# eval:
|
||||
# name: "blip2_image_eval"
|
||||
# image_size: 224
|
||||
# text_processor:
|
||||
# eval:
|
||||
# name: "blip_caption"
|
||||
|
||||
coco_caption: # 414113 train
|
||||
type: coco_cap_eval
|
||||
batch_size: 32
|
||||
vis_processor:
|
||||
eval:
|
||||
name: "blip2_image_eval"
|
||||
image_size: 224
|
||||
text_processor:
|
||||
eval:
|
||||
name: "blip_caption"
|
||||
|
||||
# ok_vqa: # train, valid (9009, 5046)
|
||||
# type: ok_vqa_eval
|
||||
# batch_size: 32
|
||||
# vis_processor:
|
||||
# eval:
|
||||
# name: "blip2_image_eval"
|
||||
# image_size: 224
|
||||
# text_processor:
|
||||
# eval:
|
||||
# name: "blip_caption"
|
||||
|
||||
# aok_vqa: # train: 17056, val: 1145
|
||||
# batch_size: 32
|
||||
# vis_processor:
|
||||
# eval:
|
||||
# name: "blip2_image_eval"
|
||||
# image_size: 224
|
||||
# text_processor:
|
||||
# eval:
|
||||
# name: "blip_caption"
|
||||
|
||||
textcaps_caption: # train: 109765, val: 15830
|
||||
batch_size: 32
|
||||
vis_processor:
|
||||
eval:
|
||||
name: "blip2_image_eval"
|
||||
image_size: 224
|
||||
text_processor:
|
||||
eval:
|
||||
name: "blip_caption"
|
||||
|
||||
run:
|
||||
task: instruction_tuning
|
||||
# optimizer
|
||||
lr_sched: "linear_warmup_cosine_lr"
|
||||
init_lr: 5e-5
|
||||
min_lr: 1e-6
|
||||
warmup_lr: 1e-6
|
||||
log_freq: 5
|
||||
save_freq: 1500
|
||||
|
||||
weight_decay: 0.05
|
||||
max_epoch: 10
|
||||
num_workers: 4
|
||||
warmup_steps: 600
|
||||
iters_per_epoch: 3000
|
||||
|
||||
seed: 42
|
||||
output_dir: "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/eval/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Cross_Universal_lnout_lr5e5_4ex4b_2loss_001_top6layer_textinqf_10epo_0330/"
|
||||
|
||||
amp: True
|
||||
resume_ckpt_path: null
|
||||
|
||||
evaluate: True
|
||||
test_splits: ["val"]
|
||||
# test_splits: ["test"]
|
||||
|
||||
device: "cuda"
|
||||
world_size: 1
|
||||
dist_url: "env://"
|
||||
distributed: True
|
||||
|
@ -0,0 +1,113 @@
|
||||
# Copyright (c) 2022, salesforce.com, inc.
|
||||
# All rights reserved.
|
||||
# SPDX-License-Identifier: BSD-3-Clause
|
||||
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
|
||||
model:
|
||||
arch: blip2_vicuna_instruct
|
||||
model_type: vicuna7b_pretrain
|
||||
load_pretrained: True
|
||||
load_finetuned: True
|
||||
vit_model: eva_clip_g
|
||||
pretrained: "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/blip2/blip2_vicuna7b/blip2_pretrained_vicuna7b.pth"
|
||||
finetuned: "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Cross_Universal_lnout_lr5e5_4ex4b_2loss_001_top6layer_textinqf_10epo_0330/20240330222/checkpoint_7.pth"
|
||||
q_former_model: "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/blip2/blip2_vicuna7b/blip2_pretrained_vicuna7b.pth"
|
||||
|
||||
# vit encoder
|
||||
image_size: 224
|
||||
drop_path_rate: 0
|
||||
use_grad_checkpoint: False
|
||||
vit_precision: "fp16"
|
||||
|
||||
# Q-Former
|
||||
num_query_token: 32
|
||||
qformer_text_input: True
|
||||
|
||||
# vicuna
|
||||
llm_model: "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/vicuna-7b-v1.1"
|
||||
prompt: ""
|
||||
max_txt_len: 256
|
||||
max_output_txt_len: 256
|
||||
|
||||
# freeze
|
||||
freeze_vit: True
|
||||
freeze_llm: True
|
||||
freeze_qformer: False
|
||||
freeze_t5_proj: False
|
||||
|
||||
# moe
|
||||
general_version: 'uni_route_moe'
|
||||
moebert_route_method: 'uni-cls-cross-route'
|
||||
moebert_load_balance: 0.01
|
||||
moebert_expert_num: 4
|
||||
moebert_num_beams: 4
|
||||
moe_weight_type: 'ffn_prob'
|
||||
use_balance_loss: False
|
||||
ln_position: "out"
|
||||
|
||||
datasets:
|
||||
|
||||
coco_caption: # 414113 train
|
||||
type: coco_cap_eval
|
||||
batch_size: 32
|
||||
vis_processor:
|
||||
eval:
|
||||
name: "blip2_image_eval"
|
||||
image_size: 224
|
||||
text_processor:
|
||||
eval:
|
||||
name: "blip_caption"
|
||||
|
||||
textcaps_caption: # train: 109765, val: 15830
|
||||
batch_size: 32
|
||||
vis_processor:
|
||||
eval:
|
||||
name: "blip2_image_eval"
|
||||
image_size: 224
|
||||
text_processor:
|
||||
eval:
|
||||
name: "blip_caption"
|
||||
|
||||
evaluation_datasets:
|
||||
vizwiz:
|
||||
eval_file_path: /mnt/pfs-guan-ssai/nlu/wanghanzi/data/VizWiz/val.json
|
||||
img_path: /mnt/pfs-guan-ssai/nlu/wanghanzi/data/VizWiz/val
|
||||
max_new_tokens: 20
|
||||
batch_size: 32
|
||||
hm:
|
||||
eval_file_path: /mnt/pfs-guan-ssai/nlu/wanghanzi/data/hm_data/dev_seen.jsonl
|
||||
img_path: /mnt/pfs-guan-ssai/nlu/wanghanzi/data/hm_data/
|
||||
max_new_tokens: 20
|
||||
batch_size: 32
|
||||
|
||||
run:
|
||||
task: instruction_tuning
|
||||
# optimizer
|
||||
lr_sched: "linear_warmup_cosine_lr"
|
||||
init_lr: 5e-5
|
||||
min_lr: 1e-6
|
||||
warmup_lr: 1e-6
|
||||
log_freq: 5
|
||||
save_freq: 1500
|
||||
|
||||
weight_decay: 0.05
|
||||
max_epoch: 10
|
||||
num_workers: 4
|
||||
warmup_steps: 600
|
||||
iters_per_epoch: 3000
|
||||
|
||||
seed: 42
|
||||
output_dir: "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/eval/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Cross_Universal_lnout_lr5e5_4ex4b_2loss_001_top6layer_textinqf_10epo_0330/"
|
||||
|
||||
amp: True
|
||||
resume_ckpt_path: null
|
||||
|
||||
evaluate: True
|
||||
# test_splits: ["val"]
|
||||
test_splits: ["test"]
|
||||
|
||||
device: "cuda"
|
||||
world_size: 1
|
||||
dist_url: "env://"
|
||||
distributed: True
|
||||
|
@ -0,0 +1,89 @@
|
||||
# Copyright (c) 2022, salesforce.com, inc.
|
||||
# All rights reserved.
|
||||
# SPDX-License-Identifier: BSD-3-Clause
|
||||
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
|
||||
model:
|
||||
arch: blip2_vicuna_instruct
|
||||
model_type: vicuna7b_pretrain
|
||||
load_pretrained: True
|
||||
load_finetuned: True
|
||||
vit_model: eva_clip_g
|
||||
pretrained: "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/blip2/blip2_vicuna7b/blip2_pretrained_vicuna7b.pth"
|
||||
finetuned: "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Cross_Universal_lnout_lr5e5_4ex4b_2loss_001_top6layer_textinqf_10epo_0330/20240330222/checkpoint_7.pth"
|
||||
q_former_model: "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/blip2/blip2_vicuna7b/blip2_pretrained_vicuna7b.pth"
|
||||
|
||||
# vit encoder
|
||||
image_size: 224
|
||||
drop_path_rate: 0
|
||||
use_grad_checkpoint: False
|
||||
vit_precision: "fp16"
|
||||
|
||||
# Q-Former
|
||||
num_query_token: 32
|
||||
qformer_text_input: True
|
||||
|
||||
# vicuna
|
||||
llm_model: "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/vicuna-7b-v1.1"
|
||||
prompt: ""
|
||||
max_txt_len: 256
|
||||
max_output_txt_len: 256
|
||||
|
||||
# freeze
|
||||
freeze_vit: True
|
||||
freeze_llm: True
|
||||
freeze_qformer: False
|
||||
freeze_t5_proj: False
|
||||
|
||||
# moe
|
||||
general_version: 'uni_route_moe'
|
||||
moebert_route_method: 'uni-cls-cross-route'
|
||||
moebert_load_balance: 0.01
|
||||
moebert_expert_num: 4
|
||||
moebert_num_beams: 4
|
||||
moe_weight_type: 'ffn_prob'
|
||||
use_balance_loss: False
|
||||
ln_position: "out"
|
||||
|
||||
datasets:
|
||||
coco_vqa: # 658104
|
||||
type: vqa_v2_eval
|
||||
batch_size: 48
|
||||
vis_processor:
|
||||
eval:
|
||||
name: "blip2_image_eval"
|
||||
image_size: 224
|
||||
text_processor:
|
||||
eval:
|
||||
name: "blip_caption"
|
||||
|
||||
run:
|
||||
task: instruction_tuning
|
||||
# optimizer
|
||||
lr_sched: "linear_warmup_cosine_lr"
|
||||
init_lr: 5e-5
|
||||
min_lr: 1e-6
|
||||
warmup_lr: 1e-6
|
||||
log_freq: 5
|
||||
save_freq: 1500
|
||||
|
||||
weight_decay: 0.05
|
||||
max_epoch: 10
|
||||
num_workers: 4
|
||||
warmup_steps: 600
|
||||
iters_per_epoch: 3000
|
||||
|
||||
seed: 42
|
||||
output_dir: "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/eval/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Cross_Universal_lnout_lr5e5_4ex4b_2loss_001_top6layer_textinqf_10epo_0330/"
|
||||
|
||||
amp: True
|
||||
resume_ckpt_path: null
|
||||
|
||||
evaluate: True
|
||||
test_splits: ["test"]
|
||||
|
||||
device: "cuda"
|
||||
world_size: 1
|
||||
dist_url: "env://"
|
||||
distributed: True
|
||||
|
@ -35,9 +35,10 @@ model:
|
||||
freeze_t5_proj: False
|
||||
|
||||
# moe
|
||||
# general_version: 'cls_route_moe'
|
||||
general_version: 'uni_route_moe'
|
||||
moebert_route_method: "post-route-uni"
|
||||
moebert_load_balance: 0.05
|
||||
moebert_route_method: 'uni-cls-cross-route'
|
||||
moebert_load_balance: 0.01
|
||||
moebert_expert_num: 3
|
||||
moebert_num_beams: 3
|
||||
moe_weight_type: 'ffn_prob'
|
||||
@ -154,13 +155,13 @@ run:
|
||||
save_freq: 1500
|
||||
|
||||
weight_decay: 0.05
|
||||
max_epoch: 8
|
||||
max_epoch: 10
|
||||
num_workers: 4
|
||||
warmup_steps: 600
|
||||
iters_per_epoch: 5000
|
||||
|
||||
seed: 42
|
||||
output_dir: "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_moe_uni_route/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_Post_Route_Universal_lnout_lr5e5_3ex3b_2loss_005_top6layer_textinqf_8epo_0328/"
|
||||
output_dir: "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_UNI_CLS_Gate_Route_lnout_lr5e5_3ex3b_2loss_001_top6layer_textinqf_10epo_0330/"
|
||||
|
||||
amp: True
|
||||
resume_ckpt_path: null
|
||||
@ -170,7 +171,7 @@ run:
|
||||
valid_splits: ["val"]
|
||||
|
||||
wandb_log: False
|
||||
# job_name: mix6_uni_route_post_5e5_3ex3b_005_10ep_0319
|
||||
# job_name: mix6_uni_cls_route_post_5e5_3ex3b_005_8ep_0330
|
||||
|
||||
device: "cuda"
|
||||
world_size: 1
|
@ -0,0 +1,180 @@
|
||||
# Copyright (c) 2022, salesforce.com, inc.
|
||||
# All rights reserved.
|
||||
# SPDX-License-Identifier: BSD-3-Clause
|
||||
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
|
||||
model:
|
||||
arch: blip2_vicuna_instruct
|
||||
model_type: vicuna7b_pretrain
|
||||
load_pretrained: True
|
||||
load_finetuned: False
|
||||
vit_model: eva_clip_g
|
||||
pretrained: "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/blip2/blip2_vicuna7b/blip2_pretrained_vicuna7b.pth"
|
||||
q_former_model: "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/blip2/blip2_vicuna7b/blip2_pretrained_vicuna7b.pth"
|
||||
|
||||
# vit encoder
|
||||
image_size: 224
|
||||
drop_path_rate: 0
|
||||
use_grad_checkpoint: False
|
||||
vit_precision: "fp16"
|
||||
|
||||
# Q-Former
|
||||
num_query_token: 32
|
||||
qformer_text_input: True
|
||||
|
||||
# vicuna7b
|
||||
llm_model: "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/vicuna-7b-v1.1"
|
||||
prompt: ""
|
||||
max_txt_len: 256
|
||||
max_output_txt_len: 256
|
||||
|
||||
# freeze
|
||||
freeze_vit: True
|
||||
freeze_llm: True
|
||||
freeze_qformer: False
|
||||
freeze_t5_proj: False
|
||||
|
||||
# moe
|
||||
general_version: 'base'
|
||||
# general_version: 'uni_route_moe'
|
||||
# moebert_route_method: "post-route-uni"
|
||||
# moebert_load_balance: 0.05
|
||||
# moebert_expert_num: 3
|
||||
# moebert_num_beams: 3
|
||||
# moe_weight_type: 'ffn_prob'
|
||||
# use_balance_loss: False
|
||||
# ln_position: "out"
|
||||
|
||||
datasets:
|
||||
gqa: # train: 943000, 12578, 12578)
|
||||
type: balanced_sft_raw
|
||||
batch_size: 32
|
||||
vis_processor:
|
||||
train:
|
||||
name: "blip2_image_train"
|
||||
image_size: 224
|
||||
eval:
|
||||
name: "blip2_image_eval"
|
||||
image_size: 224
|
||||
text_processor:
|
||||
train:
|
||||
name: "blip_caption"
|
||||
eval:
|
||||
name: "blip_caption"
|
||||
sample_ratio: 10
|
||||
|
||||
ok_vqa: # train, valid (9009, 5046)
|
||||
batch_size: 32
|
||||
vis_processor:
|
||||
train:
|
||||
name: "blip2_image_train"
|
||||
image_size: 224
|
||||
eval:
|
||||
name: "blip2_image_eval"
|
||||
image_size: 224
|
||||
text_processor:
|
||||
train:
|
||||
name: "blip_caption"
|
||||
eval:
|
||||
name: "blip_caption"
|
||||
sample_ratio: 1
|
||||
|
||||
coco_vqa: # 658104
|
||||
batch_size: 32
|
||||
vis_processor:
|
||||
train:
|
||||
name: "blip2_image_train"
|
||||
image_size: 224
|
||||
eval:
|
||||
name: "blip2_image_eval"
|
||||
image_size: 224
|
||||
text_processor:
|
||||
train:
|
||||
name: "blip_caption"
|
||||
eval:
|
||||
name: "blip_caption"
|
||||
sample_ratio: 9
|
||||
|
||||
coco_caption: # 414113 train
|
||||
batch_size: 32
|
||||
vis_processor:
|
||||
train:
|
||||
name: "blip2_image_train"
|
||||
image_size: 224
|
||||
eval:
|
||||
name: "blip2_image_eval"
|
||||
image_size: 224
|
||||
text_processor:
|
||||
train:
|
||||
name: "blip_caption"
|
||||
eval:
|
||||
name: "blip_caption"
|
||||
sample_ratio: 7
|
||||
|
||||
aok_vqa: # train: 17056, val: 1145
|
||||
batch_size: 32
|
||||
vis_processor:
|
||||
train:
|
||||
name: "blip2_image_train"
|
||||
image_size: 224
|
||||
eval:
|
||||
name: "blip2_image_eval"
|
||||
image_size: 224
|
||||
text_processor:
|
||||
train:
|
||||
name: "blip_caption"
|
||||
eval:
|
||||
name: "blip_caption"
|
||||
sample_ratio: 2
|
||||
# sample_ratio: 1
|
||||
|
||||
textcaps_caption: # train: 109765, val: 15830
|
||||
batch_size: 32
|
||||
vis_processor:
|
||||
train:
|
||||
name: "blip2_image_train"
|
||||
image_size: 224
|
||||
eval:
|
||||
name: "blip2_image_eval"
|
||||
image_size: 224
|
||||
text_processor:
|
||||
train:
|
||||
name: "blip_caption"
|
||||
eval:
|
||||
name: "blip_caption"
|
||||
# sample_ratio: 3
|
||||
sample_ratio: 4
|
||||
|
||||
run:
|
||||
task: instruction_tuning
|
||||
lr_sched: "linear_warmup_cosine_lr"
|
||||
init_lr: 5e-5
|
||||
min_lr: 1e-6
|
||||
warmup_lr: 1e-6
|
||||
log_freq: 5
|
||||
save_freq: 1500
|
||||
|
||||
weight_decay: 0.05
|
||||
max_epoch: 8
|
||||
num_workers: 4
|
||||
warmup_steps: 600
|
||||
iters_per_epoch: 5000
|
||||
|
||||
seed: 40
|
||||
# output_dir: "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_moe_uni_route/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_Post_Route_Universal_lnout_lr5e5_3ex3b_2loss_005_top6layer_textinqf_8epo_0328/"
|
||||
output_dir: "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_moe_uni_route/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_base_lr5e5_textinqf_8epo_0329/"
|
||||
|
||||
amp: True
|
||||
resume_ckpt_path: null
|
||||
|
||||
evaluate: False
|
||||
train_splits: ["train"]
|
||||
valid_splits: ["val"]
|
||||
|
||||
wandb_log: False
|
||||
# job_name: mix6_uni_route_post_5e5_3ex3b_005_10ep_0319
|
||||
|
||||
device: "cuda"
|
||||
world_size: 1
|
||||
dist_url: "env://"
|
||||
distributed: True
|
@ -0,0 +1,11 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.320559707425666,54.43,73.75,71.61572052401746,64.02907005786079
|
||||
58.936237875655905,56.23,75.25,71.09170305676857,65.37698523310611
|
||||
60.99538877404993,55.3,76.4,73.01310043668123,66.42712230268279
|
||||
61.146446175862614,58.62,76.58,73.1004366812227,67.36172071427133
|
||||
62.5934170774368,58.5,77.5,73.88646288209607,68.11996998988322
|
||||
62.41850850691684,57.47,78.24,73.7117903930131,67.96007472498249
|
||||
62.99888694546033,58.08,78.88,74.235807860262,68.54867370143059
|
||||
63.77802512323104,58.72,79.34,74.06113537117905,68.97479012360252
|
||||
63.74622356495468,58.5,79.51,74.235807860262,68.99800785630417
|
||||
63.825727460645574,58.41,79.63,74.41048034934498,69.06905195249763
|
|
@ -0,0 +1,8 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
57.40976307839084,53.92,74.0,71.26637554585152,64.14903465606059
|
||||
60.136746700588326,56.03,75.27,71.70305676855895,65.78495086728682
|
||||
60.99538877404993,56.27,76.52,73.27510917030567,66.7651244860889
|
||||
61.94943552234059,57.39,76.95,74.06113537117905,67.58764272337991
|
||||
62.55366512959135,58.17,77.83,73.53711790393012,68.02269575838037
|
||||
63.26920019080935,57.8,78.7,75.54585152838428,68.8287629297984
|
||||
63.46000954046749,58.15,79.09,74.58515283842794,68.82129059472385
|
|
@ -0,0 +1,7 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.948640483383684,53.97,73.92,71.17903930131004,64.00441994617344
|
||||
60.27985371283193,54.86,75.51,71.79039301310044,65.6100616814831
|
||||
61.138495786293525,56.33,76.33,72.66375545851528,66.61556281120221
|
||||
61.631419939577036,58.13,76.89,73.1877729257642,67.45979821633532
|
||||
62.513913181745906,57.35,77.96,72.5764192139738,67.60008309892993
|
||||
63.126093178565746,57.36,78.63,74.14847161572052,68.31614119857156
|
|
@ -0,0 +1,7 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
57.06789632692002,54.44,73.8,71.09170305676857,64.09989984592214
|
||||
59.85848306567022,56.06,75.25,72.75109170305677,65.97989369218175
|
||||
60.717125139131824,55.3,76.37,73.1877729257642,66.39372451622401
|
||||
61.34520591508984,57.32,76.94,73.62445414847161,67.30741501589037
|
||||
62.6649705835586,58.16,77.93,72.5764192139738,67.8328474493831
|
||||
62.943234218476704,59.1,78.55,74.32314410480349,68.72909458082005
|
|
@ -0,0 +1,8 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
57.203052949594536,53.68,73.68,70.48034934497817,63.76085057364318
|
||||
59.09524566703769,54.05,74.96,72.75109170305677,65.21408434252362
|
||||
61.18619812370806,56.16,76.09,73.53711790393012,66.74332900690955
|
||||
62.03688980760057,57.59,76.64,72.92576419213974,67.29816349993509
|
||||
62.47416123390046,57.58,77.69,72.75109170305677,67.62381323423931
|
||||
63.014787724598506,57.61,78.51,73.97379912663754,68.27714671280901
|
||||
63.43615837176022,57.94,79.02,73.62445414847161,68.50515313005796
|
|
@ -0,0 +1,11 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.726029575449196,54.51,73.9,71.9650655021834,64.27527376940814
|
||||
59.5802194307521,55.89,75.12,72.83842794759825,65.8571618445876
|
||||
60.605819685164576,56.41,75.93,74.06113537117905,66.7517387640859
|
||||
61.43266020034982,57.36,76.65,73.1004366812227,67.13577422039313
|
||||
62.32310383208777,57.71,77.76,74.235807860262,68.00722792308744
|
||||
62.80807759580219,58.29,78.22,73.7117903930131,68.25746699720382
|
||||
63.07839084115122,58.6,78.88,74.235807860262,68.6985496753533
|
||||
63.722372396247415,58.5,79.24,74.67248908296943,69.03371536980421
|
||||
63.89728096676737,58.97,79.44,73.88646288209607,69.04843596221586
|
||||
63.84957862935284,58.62,79.56,73.88646288209607,68.97901037786222
|
|
@ -0,0 +1,8 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.99634282079822,53.79,73.68,70.82969432314411,63.82400928598558
|
||||
59.68357449515026,54.46,75.16,72.40174672489083,65.42633030501027
|
||||
60.939736047066305,55.99,75.88,71.87772925764192,66.17186632617705
|
||||
62.00508824932422,58.43,76.67,72.48908296943232,67.39854280468914
|
||||
62.8716807123549,58.22,77.73,73.88646288209607,68.17703589861274
|
||||
62.99093655589124,58.08,78.53,74.06113537117905,68.41551798176756
|
||||
63.42820798219113,58.48,78.93,74.235807860262,68.76850396061329
|
|
@ -0,0 +1,7 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.932739704245506,54.43,73.9,71.52838427947599,64.19778099593037
|
||||
60.057242804897434,55.95,75.28,72.31441048034935,65.9004133213117
|
||||
61.44061058991891,54.26,76.24,73.1877729257642,66.28209587892077
|
||||
61.806328510096996,57.5,76.83,73.44978165938865,67.3965275423714
|
||||
62.56956590872953,58.33,77.89,73.7991266375546,68.14717313657103
|
||||
62.760375258387654,58.37,78.45,74.32314410480349,68.47587984079779
|
|
@ -0,0 +1,10 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.940690093814595,54.81,73.85,71.09170305676857,64.17309828764579
|
||||
60.20034981714104,55.52,75.37,72.5764192139738,65.9166922577787
|
||||
61.19414851327715,54.56,76.38,73.27510917030567,66.35231442089571
|
||||
61.217999681984416,57.83,76.88,73.36244541484717,67.3226112742079
|
||||
62.64111941485133,57.97,77.97,72.92576419213974,67.87672090174777
|
||||
63.03863889330577,58.54,78.49,72.75109170305677,68.20493264909064
|
||||
63.61106694228017,58.49,79.1,74.06113537117905,68.8155505783648
|
||||
63.66671966926379,58.68,79.56,72.92576419213974,68.70812096535089
|
||||
64.0244871998728,59.23,79.74,73.7117903930131,69.17656939822146
|
|
@ -0,0 +1,8 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.78963269200191,53.55,73.54,70.04366812227074,63.48082520356816
|
||||
59.95388774049929,54.89,75.12,71.52838427947599,65.37306800499383
|
||||
60.7966290348227,55.93,76.01,72.83842794759825,66.39376424560524
|
||||
61.84608045794244,56.83,76.7,73.44978165938865,67.20646552933277
|
||||
62.943234218476704,57.48,77.75,74.235807860262,68.10226051968468
|
||||
62.67292097312769,57.44,78.43,75.4585152838428,68.50035906424263
|
||||
63.36460486563842,57.82,78.92,75.10917030567686,68.80344379282882
|
|
@ -0,0 +1,8 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
57.020193989505486,53.7,73.8,70.21834061135371,63.6846336502148
|
||||
60.33550643981555,54.9,75.12,72.40174672489083,65.68931329117659
|
||||
60.947686436635394,55.55,76.29,73.01310043668123,66.45019671832915
|
||||
61.45651136905709,57.24,76.39,73.62445414847161,67.17774137938218
|
||||
62.65702019398951,57.34,77.73,75.37117903930131,68.2745498083227
|
||||
63.5156622674511,57.95,78.4,73.62445414847161,68.37252910398068
|
||||
63.6587692796947,57.77,78.75,74.49781659388647,68.6691464683953
|
|
@ -0,0 +1,11 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
57.218953728732714,55.12,74.19,71.52838427947599,64.51433450205218
|
||||
60.0095404674829,55.87,75.27,72.66375545851528,65.95332398149955
|
||||
60.73302591827,56.65,76.19,73.44978165938865,66.75570189441466
|
||||
61.42470981078073,58.09,76.81,73.44978165938865,67.44362286754235
|
||||
62.37875655907139,57.71,78.0,73.53711790393012,67.90646861575038
|
||||
62.73652408968039,57.99,78.57,73.27510917030567,68.14290831499652
|
||||
63.26124980124026,58.96,79.16,74.75982532751092,69.03526878218779
|
||||
63.626967721418346,58.1,79.68,74.235807860262,68.9106938954201
|
||||
63.77007473366195,58.19,79.87,74.32314410480349,69.03830470961636
|
||||
63.626967721418346,57.76,79.98,74.49781659388647,68.9661960788262
|
|
@ -0,0 +1,9 @@
|
||||
Bleu_1,Bleu_2,Bleu_3,Bleu_4,METEOR,ROUGE_L,CIDEr
|
||||
0.8182082924454812,0.6638925862784945,0.5165455592392635,0.3928161572696676,0.2920462773984222,0.5918020291082554,1.2987178029426083
|
||||
0.8240854949333832,0.6717746108928253,0.5257706306569868,0.40249821532303487,0.2936994611883999,0.5958284475381215,1.3272042634335437
|
||||
0.8246398014401575,0.6743122037328803,0.5292565031234792,0.40578728669235764,0.2964349874781921,0.597962455259089,1.3321248494065205
|
||||
0.8270564620397717,0.6793843847871991,0.5355102159092959,0.41366323151841006,0.2977148403261682,0.6024717705283715,1.3520977723112642
|
||||
0.8245944565058522,0.6751194271857663,0.5306411803879995,0.40888833957017,0.29642409734712727,0.598579033363294,1.3383802889190928
|
||||
0.8280804382261628,0.6796044258685356,0.537046439535483,0.4152107936908873,0.2990414503157605,0.602392043880006,1.3531755491021618
|
||||
0.8299061115859161,0.6814451792563676,0.5379678657467563,0.4156139159677314,0.2992684448837016,0.6027499590797065,1.3538095043242933
|
||||
0.8276954938807027,0.6800987491517746,0.5374861277345877,0.41554847690232694,0.2996663866671749,0.6026710548192867,1.3561296682313817
|
|
@ -0,0 +1,9 @@
|
||||
Bleu_1,Bleu_2,Bleu_3,Bleu_4,METEOR,ROUGE_L,CIDEr
|
||||
0.7309287396242824,0.5494655932407475,0.4041141975269019,0.2921841096479282,0.23361135981392955,0.48650322014232156,0.9966076482929254
|
||||
0.7382464874712654,0.5571950857230415,0.4121904524343956,0.30143019979529023,0.23826500378661586,0.4926618553461225,1.0232964787151213
|
||||
0.7350922242488682,0.5559390933443953,0.4113206176871192,0.3009155411187479,0.2374533115810085,0.49274408438489914,1.0099444415721002
|
||||
0.7369161501554021,0.556728672691215,0.41086927244074317,0.3004344996181908,0.23806683186363936,0.49184279207452697,1.0280928870205412
|
||||
0.7407251133040751,0.5595661891353809,0.4138229944446712,0.3032027996796593,0.2415473861083878,0.4972778899306893,1.0479529588574925
|
||||
0.7428951836605517,0.5623862396980985,0.4161405396490859,0.3047709156231164,0.2438504314752837,0.49858613995817086,1.0477488915322588
|
||||
0.745208695011462,0.5654882473522628,0.4200936310645993,0.308981454910347,0.24371581659378194,0.49914038443933745,1.053786374859757
|
||||
0.7444798335079819,0.5624985319454049,0.4157842492239835,0.3044642812661473,0.2432655219581268,0.49722674885535495,1.056752744677739
|
|
@ -11,7 +11,53 @@ import pandas as pd
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_moe_uni_route/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_Post_Route_Universal_lnout_lr5e5_4ex4b_2loss_005_top6layer_textinqf_10epo_0319/20240319110/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_moe_uni_route/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_Post_Route_Universal_lnout_lr6e5_3ex3b_2loss_005_top6layer_textinqf_10epo_0319/20240319105"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_moe_uni_route/mix_coco_gqa_ao_cocap_tcap_raw_Qformer_base_lr5e5_10epo_0320_instruct/20240320230/"
|
||||
path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_moe_uni_route/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_Post_Route_Universal_lnout_lr3e5_3ex3b_2loss_005_top6layer_textinqf_10epo_0326/20240326134"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_moe_uni_route/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_Post_Route_Universal_lnout_lr3e5_3ex3b_2loss_005_top6layer_textinqf_10epo_0326/20240326134"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/flant5xxl/base/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_lr5e5_top6layer_textinqf_8epo_0328/20240328100/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_moe_uni_route/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_Post_Route_Universal_lnout_lr5e5_3ex3b_2loss_005_top6layer_textinqf_8epo_0328/20240328164"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_moe_uni_route/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_base_lr5e5_textinqf_8epo_0329/20240329110"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Cross_Route_lnout_lr5e5_3ex3b_2loss_005_top6layer_textinqf_8epo_0330/20240329232/"
|
||||
|
||||
# mix5
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_raw_QformerMoE_CLS_Gate_Query_Universal_lnout_lr5e5_3ex3b_2loss_005_top6layer_textinqf_10epo_0330/20240330211/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_raw_QformerMoE_CLS_Query_Universal_lnout_lr5e5_3ex3b_2loss_005_top6layer_textinqf_10epo_0330/20240330210/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_raw_QformerMoE_CLS_Route_Universal_lnout_lr5e5_3ex3b_2loss_005_top6layer_textinqf_10epo_0330/20240330211/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_raw_QformerMoE_CLS_Cross_Route_Universal_lnout_lr5e5_3ex3b_2loss_005_top6layer_textinqf_10epo_0330/20240330183/"
|
||||
|
||||
# mix6 3ex3b uni 005
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Gate_Query_Universal_lnout_lr5e5_3ex3b_2loss_005_top6layer_textinqf_10epo_0330/20240330211/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Query_Universal_lnout_lr5e5_3ex3b_2loss_005_top6layer_textinqf_10epo_0330/20240330182/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Route_Universal_lnout_lr5e5_3ex3b_2loss_005_top6layer_textinqf_10epo_0330/20240330173/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Cross_Route_Universal_lnout_lr5e5_3ex3b_2loss_005_top6layer_textinqf_10epo_0330/20240330173/"
|
||||
|
||||
# mix6 3ex3b uni 001
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_UNI_CLS_Gate_Route_lnout_lr5e5_3ex3b_2loss_001_top6layer_textinqf_10epo_0330/20240330221/"
|
||||
|
||||
# mi6 non-universal
|
||||
# cls-cross-route-mix6-001-3ex3b-0330-wanghanzi-master-0
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Cross_lnout_lr5e5_3ex3b_2loss_001_top6layer_textinqf_10epo_0330/20240330221/"
|
||||
# cls-cross-route-mix6-001-4ex4b-wanghanzi-master-0
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Cross_lnout_lr5e5_4ex4b_2loss_001_top6layer_textinqf_10epo_0331/20240331213/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_query_lnout_lr5e5_4ex4b_2loss_001_top6layer_textinqf_10epo_0331/20240331214/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Route_lnout_lr5e5_4ex4b_2loss_001_top6layer_textinqf_10epo_0331/20240331214/"
|
||||
|
||||
# mix6 4ex4b uni 001
|
||||
path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_Base_textinqf_10epo_0331/20240331132/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Cross_Universal_lnout_lr5e5_4ex4b_2loss_001_top6layer_textinqf_10epo_0330/20240330222/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Query_Universal_lnout_lr5e5_4ex4b_2loss_001_top6layer_textinqf_10epo_0331/20240331144/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Route_Universal_lnout_lr5e5_4ex4b_2loss_001_top6layer_textinqf_10epo_0331/20240331143/"
|
||||
|
||||
# cls cross
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Cross_Universal_lnout_lr4e5_4ex4b_2loss_001_top6layer_textinqf_10epo_0331/20240331215/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Cross_Universal_lnout_lr6e5_4ex4b_2loss_001_top6layer_textinqf_10epo_0331/20240331215/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Cross_Universal_lnout_lr5e5_6ex6b_2loss_001_top6layer_textinqf_10epo_0331/20240331213/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Cross_Universal_lnout_lr5e5_8ex8b_2loss_001_top6layer_textinqf_10epo_0331/20240331213/"
|
||||
|
||||
# 8ex8b uni
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Route_Universal_lnout_lr5e5_8ex8b_2loss_001_top6layer_textinqf_10epo_0331/20240331150/"
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_mode_cls/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_CLS_Query_Universal_lnout_lr5e5_8ex8b_2loss_001_top6layer_textinqf_10epo_0331/20240331213/"
|
||||
|
||||
# post
|
||||
# path = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_moe_uni_route/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_Post_Route_Universal_lnout_lr5e5_3ex3b_2loss_001_top6layer_textinqf_10epo_0331/20240331131/"
|
||||
modes = ['gqa','okvqa','vqav2','aokvqa']
|
||||
file_name = dict()
|
||||
data = dict()
|
||||
@ -25,7 +71,11 @@ for mode in modes:
|
||||
data[mode] = accs
|
||||
print(data)
|
||||
df = pd.DataFrame(data)
|
||||
df.to_csv("/mnt/pfs-guan-ssai/nlu/wanghanzi/multimodal/PromptMoE/process_log/results.csv",index=False)
|
||||
# calculate average score
|
||||
df['avg'] = df.mean(axis=1)
|
||||
name = path.split('/')[-3]
|
||||
df.to_csv(f"/mnt/pfs-guan-ssai/nlu/wanghanzi/multimodal/PromptMoE/process_log/0401_results_{name}.csv",index=False)
|
||||
print("save to /mnt/pfs-guan-ssai/nlu/wanghanzi/multimodal/PromptMoE/process_log/0401_results_{}.csv".format(name))
|
||||
print(df)
|
||||
modes = ['coco_cap','text_cap']
|
||||
for mode in modes:
|
||||
@ -35,7 +85,7 @@ for mode in modes:
|
||||
for line in f:
|
||||
tmp.append(json.loads(line)["val"])
|
||||
df1 = pd.DataFrame(tmp)
|
||||
df1.to_csv("/mnt/pfs-guan-ssai/nlu/wanghanzi/multimodal/PromptMoE/process_log/results_{}.csv".format(mode),index=False)
|
||||
df1.to_csv("/mnt/pfs-guan-ssai/nlu/wanghanzi/multimodal/PromptMoE/process_log/caption_result/results_{}_{}.csv".format(mode,name),index=False)
|
||||
print("\n",df1)
|
||||
|
||||
|
||||
|
@ -1,11 +1,10 @@
|
||||
gqa,okvqa,vqav2,aokvqa
|
||||
56.20130386388933,54.9,73.99,70.65502183406113
|
||||
59.98568929877563,56.83,75.05,71.87772925764192
|
||||
60.81252981396088,56.97,76.33,72.31441048034935
|
||||
61.217999681984416,58.72,76.9,72.13973799126637
|
||||
62.63316902528224,57.77,77.9,73.53711790393012
|
||||
62.63316902528224,58.7,78.62,72.31441048034935
|
||||
63.0863412307203,58.44,79.17,73.01310043668123
|
||||
63.99268564159644,58.3,79.67,73.1004366812227
|
||||
63.85752901892193,58.26,79.89,73.1877729257642
|
||||
64.05628875814915,58.36,79.96,73.27510917030567
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
57.14740022261091,54.38,74.13,71.52838427947599,64.29644612552173
|
||||
59.19860073143583,55.98,75.1,72.5764192139738,65.7137549863524
|
||||
60.64557163301002,56.56,75.9,73.01310043668123,66.52966801742281
|
||||
61.3770074733662,57.87,76.6,74.06113537117905,67.47703571113631
|
||||
62.40260772777866,57.16,77.31,74.32314410480349,67.79893795814553
|
||||
62.99888694546033,57.96,78.12,73.1877729257642,68.06666496780613
|
||||
62.69677214183494,59.45,78.75,74.235807860262,68.78314500052424
|
||||
63.126093178565746,58.74,79.22,74.41048034934498,68.87414338197769
|
||||
63.30100174908571,58.32,79.5,73.7117903930131,68.7081980355247
|
||||
|
|
9
process_log/results_base.csv
Normal file
9
process_log/results_base.csv
Normal file
@ -0,0 +1,9 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
53.46636985212275,48.02,71.28,73.27510917030567,61.5103697556071
|
||||
55.525520750516776,50.12,72.37,74.32314410480349,63.08466621383006
|
||||
56.91683892510733,49.66,73.78,75.54585152838428,63.9756726133729
|
||||
57.616473207187155,52.98,74.3,76.85589519650655,65.43809210092343
|
||||
58.538718397201464,52.81,74.97,75.9825327510917,65.57531278707329
|
||||
59.54841787247575,52.71,75.53,76.68122270742359,66.11741014497483
|
||||
59.60407059945937,53.43,75.81,76.68122270742359,66.38132332672075
|
||||
59.68357449515026,53.71,75.99,77.117903930131,66.6253696063203
|
|
@ -1,11 +1,9 @@
|
||||
Bleu_1,Bleu_2,Bleu_3,Bleu_4,METEOR,ROUGE_L,CIDEr
|
||||
0.823223287530701,0.6717046486084919,0.5289578677489075,0.40968911321073265,0.29959733857127835,0.6000811689013733,1.3453305422681376
|
||||
0.8223586805364383,0.6761940235369243,0.5372021051535613,0.42002107530341415,0.3007070731886293,0.6033562057362387,1.3625435411445188
|
||||
0.8268533010152048,0.6768505208938964,0.5354603117460063,0.41692252223016474,0.3025309435581166,0.6047665704453451,1.372728338529115
|
||||
0.8330185365456568,0.6839215475169012,0.543703824076164,0.42514888177425736,0.3056707793309544,0.6059406486352524,1.3861562304957278
|
||||
0.82851059467086,0.6809176651975785,0.540587141996957,0.4231733852045105,0.30531255145802344,0.6074083433970782,1.3834468097216504
|
||||
0.826759683808046,0.6786303228237849,0.5393123491853253,0.4218864249035804,0.30435744091261596,0.6061024359922585,1.373555774390539
|
||||
0.8276490281491424,0.6807227995567375,0.5428624362839755,0.4269084803683001,0.30608939915890326,0.6078544738015538,1.3817698541866794
|
||||
0.8294752997477592,0.684006846582908,0.5462002712862497,0.43036414820903174,0.3072188868161371,0.6112755876824707,1.3946012917260822
|
||||
0.8295967394767231,0.6833360908793101,0.5455277195646591,0.4292003829675252,0.3075074477217475,0.6103970688371728,1.392473266614681
|
||||
0.8311746625208477,0.685154908394367,0.5473453025692251,0.4310962369321893,0.3077283192093123,0.6112527230048272,1.3960092087389069
|
||||
0.8182082924454812,0.6638925862784945,0.5165455592392635,0.3928161572696676,0.2920462773984222,0.5918020291082554,1.2987178029426083
|
||||
0.8240854949333832,0.6717746108928253,0.5257706306569868,0.40249821532303487,0.2936994611883999,0.5958284475381215,1.3272042634335437
|
||||
0.8246398014401575,0.6743122037328803,0.5292565031234792,0.40578728669235764,0.2964349874781921,0.597962455259089,1.3321248494065205
|
||||
0.8270564620397717,0.6793843847871991,0.5355102159092959,0.41366323151841006,0.2977148403261682,0.6024717705283715,1.3520977723112642
|
||||
0.8245944565058522,0.6751194271857663,0.5306411803879995,0.40888833957017,0.29642409734712727,0.598579033363294,1.3383802889190928
|
||||
0.8280804382261628,0.6796044258685356,0.537046439535483,0.4152107936908873,0.2990414503157605,0.602392043880006,1.3531755491021618
|
||||
0.8299061115859161,0.6814451792563676,0.5379678657467563,0.4156139159677314,0.2992684448837016,0.6027499590797065,1.3538095043242933
|
||||
0.8276954938807027,0.6800987491517746,0.5374861277345877,0.41554847690232694,0.2996663866671749,0.6026710548192867,1.3561296682313817
|
||||
|
|
@ -0,0 +1,11 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.49546827794561,56.81,73.81,70.21834061135371,64.33345222232484
|
||||
58.97598982350135,54.6,75.05,70.91703056768559,64.88575509779673
|
||||
61.408809031642555,56.58,76.51,73.36244541484717,66.96531361162243
|
||||
62.020989028462395,58.58,76.98,72.13973799126637,67.43018175493219
|
||||
62.346955000795035,56.98,78.14,73.27510917030567,67.68551604277518
|
||||
63.43615837176022,57.51,78.88,73.1004366812227,68.23164876324573
|
||||
63.79392590236922,57.77,79.41,73.7117903930131,68.67142907384559
|
||||
63.722372396247415,58.26,79.93,73.88646288209607,68.94970881958587
|
||||
63.57131499443472,58.05,80.13,73.36244541484717,68.77844010232047
|
||||
63.817777071076485,58.43,80.19,73.7117903930131,69.0373918660224
|
|
@ -0,0 +1,9 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.638575290189216,55.75,73.72,71.09170305676857,64.30006958673944
|
||||
59.111146446175866,56.38,75.02,73.1877729257642,65.92472984298502
|
||||
61.43266020034982,56.12,76.5,72.83842794759825,66.72277203698701
|
||||
62.283351884242336,58.41,77.06,72.40174672489083,67.5387746522833
|
||||
62.31515344251868,57.59,78.2,73.7117903930131,67.95423595888295
|
||||
63.42820798219113,57.71,78.77,73.97379912663754,68.47050177720718
|
||||
63.316902528223885,58.18,79.44,73.97379912663754,68.72767541371536
|
||||
63.74622356495468,58.59,79.9,74.235807860262,69.11800785630417
|
|
@ -0,0 +1,10 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.78963269200191,56.29,73.86,70.91703056768559,64.46416581492187
|
||||
59.66767371601208,54.41,75.21,72.48908296943232,65.4441891713611
|
||||
61.33725552552075,56.65,76.37,73.62445414847161,66.9954274184981
|
||||
62.013038638893306,59.54,77.12,73.27510917030567,67.98703695229975
|
||||
62.927333439338526,57.51,78.17,73.62445414847161,68.05794689695253
|
||||
63.67467005883288,57.53,78.9,73.01310043668123,68.27944262387852
|
||||
63.5156622674511,58.04,79.41,74.06113537117905,68.75669940965753
|
||||
63.642868500556524,58.31,79.97,73.44978165938865,68.8431625399863
|
||||
63.937032914612814,58.11,80.18,73.97379912663754,69.05020801031259
|
|
@ -0,0 +1,9 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.21720464302751,56.58,73.83,70.56768558951964,64.29872255813677
|
||||
59.40531086023215,55.45,75.26,72.40174672489083,65.62926439628075
|
||||
59.810780728255686,52.47,75.44,70.82969432314411,64.63761876284994
|
||||
61.75862617268246,58.43,76.42,71.9650655021834,67.14342291871647
|
||||
62.77627603752583,57.39,77.56,73.88646288209607,67.90318472990548
|
||||
63.141993957703924,57.33,78.13,74.41048034934498,68.25311857676222
|
||||
63.44410876132931,57.15,78.86,73.01310043668123,68.11680229950264
|
||||
63.34870408650024,57.88,79.29,73.7117903930131,68.55762361987834
|
|
@ -0,0 +1,11 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.320559707425666,54.43,73.75,71.61572052401746,64.02907005786079
|
||||
58.936237875655905,56.23,75.25,71.09170305676857,65.37698523310611
|
||||
60.99538877404993,55.3,76.4,73.01310043668123,66.42712230268279
|
||||
61.146446175862614,58.62,76.58,73.1004366812227,67.36172071427133
|
||||
62.5934170774368,58.5,77.5,73.88646288209607,68.11996998988322
|
||||
62.41850850691684,57.47,78.24,73.7117903930131,67.96007472498249
|
||||
62.99888694546033,58.08,78.88,74.235807860262,68.54867370143059
|
||||
63.77802512323104,58.72,79.34,74.06113537117905,68.97479012360252
|
||||
63.74622356495468,58.5,79.51,74.235807860262,68.99800785630417
|
||||
63.825727460645574,58.41,79.63,74.41048034934498,69.06905195249763
|
|
@ -0,0 +1,11 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
57.0122435999364,54.2,74.05,71.9650655021834,64.30682727552995
|
||||
60.065193194466524,55.18,75.18,72.48908296943232,65.72856904097472
|
||||
60.87613293051359,57.05,75.99,73.01310043668123,66.7323083417987
|
||||
61.69502305612975,58.69,76.81,73.7991266375546,67.74853742342108
|
||||
62.291302273811425,58.12,77.73,73.44978165938865,67.89777098330002
|
||||
62.56956590872953,57.97,78.35,73.01310043668123,67.97566658635269
|
||||
63.17379551598028,59.22,78.91,73.53711790393012,68.7102283549776
|
||||
63.46000954046749,57.9,79.42,73.53711790393012,68.5792818610994
|
||||
63.77802512323104,58.46,79.58,73.36244541484717,68.79511763451956
|
||||
63.83367785021466,58.36,79.73,73.62445414847161,68.88703299967158
|
|
@ -0,0 +1,7 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
57.40976307839084,53.92,74.0,71.26637554585152,64.14903465606059
|
||||
60.136746700588326,56.03,75.27,71.70305676855895,65.78495086728682
|
||||
60.99538877404993,56.27,76.52,73.27510917030567,66.7651244860889
|
||||
61.94943552234059,57.39,76.95,74.06113537117905,67.58764272337991
|
||||
62.55366512959135,58.17,77.83,73.53711790393012,68.02269575838037
|
||||
63.26920019080935,57.8,78.7,75.54585152838428,68.8287629297984
|
|
@ -0,0 +1,11 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
57.54491970106535,54.21,73.9,71.87772925764192,64.38316223967682
|
||||
59.93798696136111,54.74,75.12,72.75109170305677,65.63726966610447
|
||||
60.77277786611543,55.58,76.23,73.7991266375546,66.59547612591751
|
||||
61.66322149785339,57.91,76.69,73.27510917030567,67.38458266703977
|
||||
62.56956590872953,57.59,77.73,74.06113537117905,67.98767531997714
|
||||
62.85577993321672,58.39,78.58,74.8471615720524,68.66823537631728
|
||||
63.33280330736206,58.49,79.11,74.67248908296943,68.90132309758287
|
||||
63.61106694228017,58.64,79.56,75.02183406113538,69.20822525085389
|
||||
63.69852122754015,58.41,79.8,74.67248908296943,69.14525257762739
|
||||
63.68262044840197,58.45,79.9,74.75982532751092,69.19811144397823
|
|
@ -0,0 +1,7 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.948640483383684,53.97,73.92,71.17903930131004,64.00441994617344
|
||||
60.27985371283193,54.86,75.51,71.79039301310044,65.6100616814831
|
||||
61.138495786293525,56.33,76.33,72.66375545851528,66.61556281120221
|
||||
61.631419939577036,58.13,76.89,73.1877729257642,67.45979821633532
|
||||
62.513913181745906,57.35,77.96,72.5764192139738,67.60008309892993
|
||||
63.126093178565746,57.36,78.63,74.14847161572052,68.31614119857156
|
|
@ -0,0 +1,6 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
57.06789632692002,54.44,73.8,71.09170305676857,64.09989984592214
|
||||
59.85848306567022,56.06,75.25,72.75109170305677,65.97989369218175
|
||||
60.717125139131824,55.3,76.37,73.1877729257642,66.39372451622401
|
||||
61.34520591508984,57.32,76.94,73.62445414847161,67.30741501589037
|
||||
62.6649705835586,58.16,77.93,72.5764192139738,67.8328474493831
|
|
@ -0,0 +1,7 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
57.203052949594536,53.68,73.68,70.48034934497817,63.76085057364318
|
||||
59.09524566703769,54.05,74.96,72.75109170305677,65.21408434252362
|
||||
61.18619812370806,56.16,76.09,73.53711790393012,66.74332900690955
|
||||
62.03688980760057,57.59,76.64,72.92576419213974,67.29816349993509
|
||||
62.47416123390046,57.58,77.69,72.75109170305677,67.62381323423931
|
||||
63.014787724598506,57.61,78.51,73.97379912663754,68.27714671280901
|
|
@ -0,0 +1,11 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.726029575449196,54.51,73.9,71.9650655021834,64.27527376940814
|
||||
59.5802194307521,55.89,75.12,72.83842794759825,65.8571618445876
|
||||
60.605819685164576,56.41,75.93,74.06113537117905,66.7517387640859
|
||||
61.43266020034982,57.36,76.65,73.1004366812227,67.13577422039313
|
||||
62.32310383208777,57.71,77.76,74.235807860262,68.00722792308744
|
||||
62.80807759580219,58.29,78.22,73.7117903930131,68.25746699720382
|
||||
63.07839084115122,58.6,78.88,74.235807860262,68.6985496753533
|
||||
63.722372396247415,58.5,79.24,74.67248908296943,69.03371536980421
|
||||
63.89728096676737,58.97,79.44,73.88646288209607,69.04843596221586
|
||||
63.84957862935284,58.62,79.56,73.88646288209607,68.97901037786222
|
|
@ -0,0 +1,7 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.99634282079822,53.79,73.68,70.82969432314411,63.82400928598558
|
||||
59.68357449515026,54.46,75.16,72.40174672489083,65.42633030501027
|
||||
60.939736047066305,55.99,75.88,71.87772925764192,66.17186632617705
|
||||
62.00508824932422,58.43,76.67,72.48908296943232,67.39854280468914
|
||||
62.8716807123549,58.22,77.73,73.88646288209607,68.17703589861274
|
||||
62.99093655589124,58.08,78.53,74.06113537117905,68.41551798176756
|
|
@ -0,0 +1,10 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.940690093814595,54.47,73.98,71.61572052401746,64.25160265445803
|
||||
60.12879631101924,55.14,75.16,72.31441048034935,65.68580169784215
|
||||
61.09874383844809,55.84,76.32,73.01310043668123,66.56796106878232
|
||||
61.95738591190968,58.01,76.9,73.44978165938865,67.57929189282459
|
||||
62.752424868818565,58.21,77.94,73.1004366812227,68.00071538751033
|
||||
62.8001272062331,58.29,78.52,74.235807860262,68.46148376662377
|
||||
63.17379551598028,58.75,79.04,73.88646288209607,68.71256459951908
|
||||
63.4520591508984,57.67,79.69,73.88646288209607,68.67463050824861
|
||||
63.5872157735729,58.24,79.92,73.62445414847161,68.84291748051113
|
|
@ -0,0 +1,11 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
57.14740022261091,54.38,74.13,71.52838427947599,64.29644612552173
|
||||
59.19860073143583,55.98,75.1,72.5764192139738,65.7137549863524
|
||||
60.64557163301002,56.56,75.9,73.01310043668123,66.52966801742281
|
||||
61.3770074733662,57.87,76.6,74.06113537117905,67.47703571113631
|
||||
62.40260772777866,57.16,77.31,74.32314410480349,67.79893795814553
|
||||
62.99888694546033,57.96,78.12,73.1877729257642,68.06666496780613
|
||||
62.69677214183494,59.45,78.75,74.235807860262,68.78314500052424
|
||||
63.126093178565746,58.74,79.22,74.41048034934498,68.87414338197769
|
||||
63.30100174908571,58.32,79.5,73.7117903930131,68.7081980355247
|
||||
63.29305135951662,58.05,79.62,73.7991266375546,68.6905444992678
|
|
@ -0,0 +1,11 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
57.521068532358086,53.93,73.93,70.74235807860262,64.03085665274017
|
||||
60.39910955636826,54.91,75.34,71.70305676855895,65.5880415812318
|
||||
61.04309111146446,56.33,76.35,73.97379912663754,66.9242225595255
|
||||
62.17204643027509,57.25,76.97,72.22707423580786,67.15478016652074
|
||||
62.919383049769436,57.44,77.9,73.44978165938865,67.92729117728952
|
||||
63.5156622674511,58.08,78.7,74.14847161572052,68.6110334707929
|
||||
63.96088408332008,58.17,79.22,74.14847161572052,68.87483892476016
|
||||
64.27889966608363,58.38,79.75,73.44978165938865,68.96467033136807
|
||||
63.98473525202735,58.32,79.91,73.53711790393012,68.93796328898937
|
||||
64.46175862617268,57.95,80.05,73.27510917030567,68.93421694911959
|
|
@ -0,0 +1,6 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.932739704245506,54.43,73.9,71.52838427947599,64.19778099593037
|
||||
60.057242804897434,55.95,75.28,72.31441048034935,65.9004133213117
|
||||
61.44061058991891,54.26,76.24,73.1877729257642,66.28209587892077
|
||||
61.806328510096996,57.5,76.83,73.44978165938865,67.3965275423714
|
||||
62.56956590872953,58.33,77.89,73.7991266375546,68.14717313657103
|
|
@ -0,0 +1,11 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.75783113372555,54.51,73.98,71.87772925764192,64.28139009784186
|
||||
59.98568929877563,55.07,75.3,72.48908296943232,65.711193067052
|
||||
60.88408332008268,56.75,76.03,73.97379912663754,66.90947061168006
|
||||
61.75067578311337,57.82,76.87,73.97379912663754,67.60361872743772
|
||||
62.442359675624104,57.72,77.97,73.53711790393012,67.91736939488857
|
||||
62.8716807123549,57.88,78.51,73.97379912663754,68.30886995974811
|
||||
63.308952138654796,58.55,79.09,74.235807860262,68.7961899997292
|
||||
63.547463825727455,57.86,79.61,74.67248908296943,68.92248822717423
|
||||
63.809826681507396,58.42,79.81,74.49781659388647,69.13441081884847
|
||||
63.722372396247415,57.87,79.93,74.32314410480349,68.96137912526272
|
|
@ -0,0 +1,11 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.97249165209095,54.35,73.91,70.56768558951964,63.950044310402646
|
||||
60.24805215455557,55.26,75.14,72.5764192139738,65.80611784213234
|
||||
60.8681825409445,55.82,76.32,74.58515283842794,66.89833384484311
|
||||
61.99713785975513,57.76,76.9,73.44978165938865,67.52672987978595
|
||||
62.76832564795674,58.45,77.85,73.7991266375546,68.21686307137783
|
||||
63.16584512641119,57.87,78.61,73.53711790393012,68.29574075758532
|
||||
63.84162823978375,58.28,79.01,73.53711790393012,68.66718653592847
|
||||
64.31865161392908,58.35,79.56,73.27510917030567,68.87594019605869
|
||||
64.41405628875815,58.76,79.68,73.44978165938865,69.0759594870367
|
||||
64.62076641755446,58.6,79.84,73.88646288209607,69.23680732491263
|
|
@ -0,0 +1,9 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
56.940690093814595,54.81,73.85,71.09170305676857,64.17309828764579
|
||||
60.20034981714104,55.52,75.37,72.5764192139738,65.9166922577787
|
||||
61.19414851327715,54.56,76.38,73.27510917030567,66.35231442089571
|
||||
61.217999681984416,57.83,76.88,73.36244541484717,67.3226112742079
|
||||
62.64111941485133,57.97,77.97,72.92576419213974,67.87672090174777
|
||||
63.03863889330577,58.54,78.49,72.75109170305677,68.20493264909064
|
||||
63.61106694228017,58.49,79.1,74.06113537117905,68.8155505783648
|
||||
63.66671966926379,58.68,79.56,72.92576419213974,68.70812096535089
|
|
@ -0,0 +1,7 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
57.020193989505486,53.7,73.8,70.21834061135371,63.6846336502148
|
||||
60.33550643981555,54.9,75.12,72.40174672489083,65.68931329117659
|
||||
60.947686436635394,55.55,76.29,73.01310043668123,66.45019671832915
|
||||
61.45651136905709,57.24,76.39,73.62445414847161,67.17774137938218
|
||||
62.65702019398951,57.34,77.73,75.37117903930131,68.2745498083227
|
||||
63.5156622674511,57.95,78.4,73.62445414847161,68.37252910398068
|
|
@ -0,0 +1,9 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
57.33025918269995,54.6,74.14,70.91703056768559,64.24682243759638
|
||||
59.643822547304815,55.57,75.28,72.13973799126637,65.6583901346428
|
||||
60.7966290348227,56.62,76.23,74.14847161572052,66.9487751626358
|
||||
61.806328510096996,57.53,76.92,73.88646288209607,67.53569784804826
|
||||
62.67292097312769,57.78,78.04,74.49781659388647,68.24768439175354
|
||||
63.05453967244395,57.7,78.55,73.44978165938865,68.18858033295815
|
||||
63.16584512641119,58.84,79.15,73.7991266375546,68.73874294099144
|
||||
63.75417395452377,58.02,79.59,73.7117903930131,68.76899108688423
|
|
@ -0,0 +1,9 @@
|
||||
gqa,okvqa,vqav2,aokvqa,avg
|
||||
53.46636985212275,48.02,71.28,73.27510917030567,61.5103697556071
|
||||
55.525520750516776,50.12,72.37,74.32314410480349,63.08466621383006
|
||||
56.91683892510733,49.66,73.78,75.54585152838428,63.9756726133729
|
||||
57.616473207187155,52.98,74.3,76.85589519650655,65.43809210092343
|
||||
58.538718397201464,52.81,74.97,75.9825327510917,65.57531278707329
|
||||
59.54841787247575,52.71,75.53,76.68122270742359,66.11741014497483
|
||||
59.60407059945937,53.43,75.81,76.68122270742359,66.38132332672075
|
||||
59.68357449515026,53.71,75.99,77.117903930131,66.6253696063203
|
|
@ -1,11 +1,9 @@
|
||||
Bleu_1,Bleu_2,Bleu_3,Bleu_4,METEOR,ROUGE_L,CIDEr
|
||||
0.7354185510459915,0.5532517544390539,0.40861793000486973,0.29983800193167554,0.24116643313333005,0.49331369213983123,1.0410874398111594
|
||||
0.7337559429476805,0.5532662736631931,0.4093585176779233,0.2995878219607148,0.24114315075166085,0.49493696747386196,1.0409495699510138
|
||||
0.7320402508385379,0.5518304887400776,0.4110219411525107,0.3038313373404956,0.24291044377257376,0.496058725623593,1.0575894770967331
|
||||
0.735500933603824,0.557825793289975,0.41590254371174706,0.30692236406930773,0.2383527664105175,0.49362765900900546,1.044158754983385
|
||||
0.7398393194706776,0.5620893308030489,0.41820732364444946,0.3078230351155729,0.24483177062749348,0.49847300976639547,1.0688814357108025
|
||||
0.7371954616083516,0.5585083902477329,0.4158548739958792,0.30707857737975475,0.244730703390385,0.49852757085109406,1.0729374604921766
|
||||
0.743162583518909,0.5634215669347339,0.42011923174763044,0.311173553245093,0.2441994031592775,0.49809622365158585,1.0774442793527572
|
||||
0.7394105997457735,0.5596190520647151,0.4174127065616514,0.3086643930692146,0.24516092911412224,0.4984150187439041,1.0745130576356021
|
||||
0.7401475669028302,0.5612229049005432,0.4184684096329846,0.3101423931360949,0.2459814560570504,0.49998501882495094,1.0809003006778692
|
||||
0.7420413230468877,0.5634982579203833,0.4203003411022801,0.3115589386663839,0.245912807863165,0.4989393568537978,1.0805529900845852
|
||||
0.7309287396242824,0.5494655932407475,0.4041141975269019,0.2921841096479282,0.23361135981392955,0.48650322014232156,0.9966076482929254
|
||||
0.7382464874712654,0.5571950857230415,0.4121904524343956,0.30143019979529023,0.23826500378661586,0.4926618553461225,1.0232964787151213
|
||||
0.7350922242488682,0.5559390933443953,0.4113206176871192,0.3009155411187479,0.2374533115810085,0.49274408438489914,1.0099444415721002
|
||||
0.7369161501554021,0.556728672691215,0.41086927244074317,0.3004344996181908,0.23806683186363936,0.49184279207452697,1.0280928870205412
|
||||
0.7407251133040751,0.5595661891353809,0.4138229944446712,0.3032027996796593,0.2415473861083878,0.4972778899306893,1.0479529588574925
|
||||
0.7428951836605517,0.5623862396980985,0.4161405396490859,0.3047709156231164,0.2438504314752837,0.49858613995817086,1.0477488915322588
|
||||
0.745208695011462,0.5654882473522628,0.4200936310645993,0.308981454910347,0.24371581659378194,0.49914038443933745,1.053786374859757
|
||||
0.7444798335079819,0.5624985319454049,0.4157842492239835,0.3044642812661473,0.2432655219581268,0.49722674885535495,1.056752744677739
|
||||
|
|
149
test.py
Normal file
149
test.py
Normal file
@ -0,0 +1,149 @@
|
||||
# from math import factorial
|
||||
# def combine_number(n,k):
|
||||
# combinations = factorial(n) / factorial(n - k)
|
||||
# return combinations
|
||||
|
||||
# # 定义一个函数来计算给定字符串中平衡串的子序列数量
|
||||
# def count_balanced_subsequences(s):
|
||||
# MOD = 10**9 + 7
|
||||
# # 初始化字母计数器
|
||||
# count = [0] * 26
|
||||
# for char in s:
|
||||
# count[ord(char) - ord('a')] += 1
|
||||
|
||||
# result = 0
|
||||
# while sum(count)>0:
|
||||
# cnt = 0
|
||||
# for i in range(26):
|
||||
# if count[i] > 0:
|
||||
# cnt += 1
|
||||
# count[i] -= 1
|
||||
# print(count)
|
||||
# result += combine_number(cnt,2)
|
||||
# print(result)
|
||||
# return result
|
||||
|
||||
# # 示例输入
|
||||
# n = 5
|
||||
# s = "ababc"
|
||||
# # 计算结果
|
||||
# result = count_balanced_subsequences(s)
|
||||
# print(result)
|
||||
|
||||
# def calculate_scores(k, x, y):
|
||||
# # 根据题目描述,我们有以下等式:
|
||||
# # a + b + c = k
|
||||
# # c = a + x
|
||||
# # c = b - y
|
||||
# # 由上面两个等式可得:a + x = b - y
|
||||
# # 因此我们可以解这个线性方程组得到a, b, c的值
|
||||
|
||||
# # a + (a + x) + (a + x + y) = k
|
||||
# # 3a + 2x + y = k
|
||||
# # 解得:
|
||||
# a = (k - 2*x - y) // 3
|
||||
# c = a + x
|
||||
# b = c + y
|
||||
|
||||
# return a, b, c
|
||||
|
||||
# # 示例输入
|
||||
# k, x, y = 441, 1, -20
|
||||
# # 计算输出
|
||||
# a, b, c = calculate_scores(k, x, y)
|
||||
# print(a, b, c)
|
||||
|
||||
|
||||
|
||||
# def min_operations_to_equal(s, t):
|
||||
# operations = []
|
||||
# i = len(s) - 1
|
||||
# while i >= 0:
|
||||
# if s[i] != t[i]:
|
||||
# operations.append((1, i + 1, t[i]))
|
||||
# s = t[i] * (i + 1) + s[i + 1:] # 更新s字符串为操作后的状态
|
||||
# i -= 1
|
||||
# return operations
|
||||
|
||||
# # 示例输入
|
||||
# s = "aabc"
|
||||
# t = "abcc"
|
||||
|
||||
# # 计算所需的最小操作次数及具体操作
|
||||
# operations1 = min_operations_to_equal(s, t)
|
||||
# operations2 = min_operations_to_equal(t, s)
|
||||
|
||||
# if len(operations1) < len(operations2):
|
||||
# operations = operations1
|
||||
# else:
|
||||
# operations = operations2
|
||||
# # 输出结果
|
||||
# print(len(operations))
|
||||
# for op in operations:
|
||||
# print(*op)
|
||||
|
||||
|
||||
|
||||
# #include <iostream>
|
||||
# #include <linux/limits,h>
|
||||
# #include <string>
|
||||
# using namespace std;
|
||||
# struct node {
|
||||
# char a, b;
|
||||
# }ans[100100];
|
||||
|
||||
# char col[9] = {'','a','b'
|
||||
|
||||
# int main(){
|
||||
# string x; cin >>x;
|
||||
# char w=x[0],s=x[1];
|
||||
# int ww=w-'a'+ 1;
|
||||
# int ss =s -'0';
|
||||
# int tot = 0;
|
||||
# for(int i=1;i<=8; ++i){
|
||||
# if(1 != ss){
|
||||
# ans[++tot]=(node){w,(char)(i +'@')};
|
||||
# }
|
||||
# }
|
||||
# for(int i=1; i <= 8; ++i){
|
||||
# if(1 != ww){
|
||||
# ans[++tot]=(node){colli], s};
|
||||
# }
|
||||
# }
|
||||
|
||||
# for(int i=1;i<8;++1){
|
||||
# for(int j=1;j<=8; ++j){
|
||||
# if(i+j==ww + ss){
|
||||
# if(i !=ss |lj != ww){
|
||||
# ans[++tot]=(node){col[j],(char)}
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# for(int i=1;i<=8;++i){
|
||||
# for(int j=1;j<=8; ++j){
|
||||
# if(i-j=ss-ww){
|
||||
# if(i !=ss ||j!= ww){
|
||||
# ans[++tot]=(node)fcol[j],(char)
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
|
||||
# cout << tot.<< endl;
|
||||
# for(int i =1; i <= tot; ++i) cout << ans[i].a <<
|
||||
# return 0;
|
||||
|
||||
# #include <linux/limits.h>
|
||||
# #include <string>using namespace stdj
|
||||
# const int N= 1001008
|
||||
# int n, a[N];
|
||||
# int main(){
|
||||
# cin >> n;
|
||||
# int tot1 = 0, tot0 = 0;
|
||||
# for(int i=1;i<= n; ++1){
|
||||
# cin >> a[i];
|
||||
# if(a[i]%2=0) tot0++;
|
||||
# else tot1++;
|
||||
# cout << abs(tot1-(n/2))<<endl;
|
||||
# return 0;
|
@ -1,5 +0,0 @@
|
||||
from minigpt4.common.caption_tools.caption_utils import coco_caption_eval, textcaps_caption_eval
|
||||
result_file = "/mnt/pfs-guan-ssai/nlu/wanghanzi/experiments/blip2/vicuna7b/qformer_moe_uni_route/mix_coco_gqa_ao_cocap_textcap_raw_QformerMoE_Post_Route_Universal_lnout_lr5e5_3ex3b_2loss_005_top6layer_textinqf_12epo_0317/20240317165/result/val_vqa_result_text_cap.json"
|
||||
annotaion_file = "/mnt/pfs-guan-ssai/nlu/wanghanzi/data/TextCap/TextCaps_0.1_val.json"
|
||||
eval = textcaps_caption_eval(annotaion_file, result_file)
|
||||
print(eval.eval.item())
|
Loading…
Reference in New Issue
Block a user