diff --git a/minigpt4/models/modeling_llama.py b/minigpt4/models/modeling_llama.py index 12d980e..6d28020 100644 --- a/minigpt4/models/modeling_llama.py +++ b/minigpt4/models/modeling_llama.py @@ -1,628 +1,17 @@ -# This script is based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py - -""" PyTorch LLaMA model.""" import math from typing import List, Optional, Tuple, Union import torch -import torch.utils.checkpoint -from torch import nn -from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss +import torch.nn.functional as F +from torch.nn import CrossEntropyLoss -from transformers.activations import ACT2FN -from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast -from transformers.modeling_utils import PreTrainedModel -from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings -from transformers.models.llama.configuration_llama import LlamaConfig +from transformers.utils import add_start_docstrings_to_model_forward, replace_return_docstrings +from transformers.modeling_outputs import CausalLMOutputWithPast +from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING, _CONFIG_FOR_DOC +from transformers.models.llama.modeling_llama import LlamaForCausalLM as LlamaForCausalLMOrig -logger = logging.get_logger(__name__) - -_CONFIG_FOR_DOC = "LlamaConfig" - - -# Copied from transformers.models.bart.modeling_bart._make_causal_mask -def _make_causal_mask( - input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 -): - """ - Make causal mask used for bi-directional self-attention. - """ - bsz, tgt_len = input_ids_shape - mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) - mask_cond = torch.arange(mask.size(-1), device=device) - mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) - mask = mask.to(dtype) - - if past_key_values_length > 0: - mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) - return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) - - -# Copied from transformers.models.bart.modeling_bart._expand_mask -def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): - """ - Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. - """ - bsz, src_len = mask.size() - tgt_len = tgt_len if tgt_len is not None else src_len - - expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) - - inverted_mask = 1.0 - expanded_mask - - return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) - - -class LlamaRMSNorm(nn.Module): - def __init__(self, hidden_size, eps=1e-6): - """ - LlamaRMSNorm is equivalent to T5LayerNorm - """ - super().__init__() - self.weight = nn.Parameter(torch.ones(hidden_size)) - self.variance_epsilon = eps - - def forward(self, hidden_states): - variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) - - # convert into half-precision if necessary - if self.weight.dtype in [torch.float16, torch.bfloat16]: - hidden_states = hidden_states.to(self.weight.dtype) - - return self.weight * hidden_states - - -class LlamaRotaryEmbedding(torch.nn.Module): - def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): - super().__init__() - inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) - self.register_buffer("inv_freq", inv_freq) - - # Build here to make `torch.jit.trace` work. - self.max_seq_len_cached = max_position_embeddings - t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype) - freqs = torch.einsum("i,j->ij", t, self.inv_freq) - # Different from paper, but it uses a different permutation in order to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1) - self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False) - self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False) - - def forward(self, x, seq_len=None): - # x: [bs, num_attention_heads, seq_len, head_size] - # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case. - if seq_len > self.max_seq_len_cached: - self.max_seq_len_cached = seq_len - t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype) - freqs = torch.einsum("i,j->ij", t, self.inv_freq) - # Different from paper, but it uses a different permutation in order to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1).to(x.device) - self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False) - self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False) - return ( - self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), - self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), - ) - - -def rotate_half(x): - """Rotates half the hidden dims of the input.""" - x1 = x[..., : x.shape[-1] // 2] - x2 = x[..., x.shape[-1] // 2 :] - return torch.cat((-x2, x1), dim=-1) - - -def apply_rotary_pos_emb(q, k, cos, sin, position_ids): - gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1] - gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3]) - cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices) - sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices) - q_embed = (q * cos) + (rotate_half(q) * sin) - k_embed = (k * cos) + (rotate_half(k) * sin) - return q_embed, k_embed - - -class LlamaMLP(nn.Module): - def __init__( - self, - hidden_size: int, - intermediate_size: int, - hidden_act: str, - ): - super().__init__() - self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) - self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) - self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) - self.act_fn = ACT2FN[hidden_act] - - def forward(self, x): - return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) - - -class LlamaAttention(nn.Module): - """Multi-headed attention from 'Attention Is All You Need' paper""" - - def __init__(self, config: LlamaConfig): - super().__init__() - self.config = config - self.hidden_size = config.hidden_size - self.num_heads = config.num_attention_heads - self.head_dim = self.hidden_size // self.num_heads - self.max_position_embeddings = config.max_position_embeddings - - if (self.head_dim * self.num_heads) != self.hidden_size: - raise ValueError( - f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" - f" and `num_heads`: {self.num_heads})." - ) - self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) - self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) - self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) - self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) - self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings) - - def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): - return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - output_attentions: bool = False, - use_cache: bool = False, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: - bsz, q_len, _ = hidden_states.size() - - query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) - key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) - value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) - - kv_seq_len = key_states.shape[-2] - if past_key_value is not None: - kv_seq_len += past_key_value[0].shape[-2] - cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) - query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) - # [bsz, nh, t, hd] - - if past_key_value is not None: - # reuse k, v, self_attention - key_states = torch.cat([past_key_value[0], key_states], dim=2) - value_states = torch.cat([past_key_value[1], value_states], dim=2) - - past_key_value = (key_states, value_states) if use_cache else None - - attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) - - if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): - raise ValueError( - f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" - f" {attn_weights.size()}" - ) - - if attention_mask is not None: - if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): - raise ValueError( - f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" - ) - attn_weights = attn_weights + attention_mask - attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) - - # upcast attention to fp32 - attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) - attn_output = torch.matmul(attn_weights, value_states) - - if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): - raise ValueError( - f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" - f" {attn_output.size()}" - ) - - attn_output = attn_output.transpose(1, 2) - attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) - - attn_output = self.o_proj(attn_output) - - if not output_attentions: - attn_weights = None - - return attn_output, attn_weights, past_key_value - - -class LlamaDecoderLayer(nn.Module): - def __init__(self, config: LlamaConfig): - super().__init__() - self.hidden_size = config.hidden_size - self.self_attn = LlamaAttention(config=config) - self.mlp = LlamaMLP( - hidden_size=self.hidden_size, - intermediate_size=config.intermediate_size, - hidden_act=config.hidden_act, - ) - self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) - self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - output_attentions: Optional[bool] = False, - use_cache: Optional[bool] = False, - ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: - """ - Args: - hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` - attention_mask (`torch.FloatTensor`, *optional*): attention mask of size - `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding - (see `past_key_values`). - past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states - """ - - residual = hidden_states - - hidden_states = self.input_layernorm(hidden_states) - - # Self Attention - hidden_states, self_attn_weights, present_key_value = self.self_attn( - hidden_states=hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - ) - hidden_states = residual + hidden_states - - # Fully Connected - residual = hidden_states - hidden_states = self.post_attention_layernorm(hidden_states) - hidden_states = self.mlp(hidden_states) - hidden_states = residual + hidden_states - - outputs = (hidden_states,) - - if output_attentions: - outputs += (self_attn_weights,) - - if use_cache: - outputs += (present_key_value,) - - return outputs - - -LLAMA_START_DOCSTRING = r""" - This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the - library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads - etc.) - - This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. - Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage - and behavior. - - Parameters: - config ([`LlamaConfig`]): - Model configuration class with all the parameters of the model. Initializing with a config file does not - load the weights associated with the model, only the configuration. Check out the - [`~PreTrainedModel.from_pretrained`] method to load the model weights. -""" - - -@add_start_docstrings( - "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", - LLAMA_START_DOCSTRING, -) -class LlamaPreTrainedModel(PreTrainedModel): - config_class = LlamaConfig - base_model_prefix = "model" - supports_gradient_checkpointing = True - _no_split_modules = ["LlamaDecoderLayer"] - _keys_to_ignore_on_load_unexpected = [r"decoder\.version"] - - def _init_weights(self, module): - std = self.config.initializer_range - if isinstance(module, nn.Linear): - module.weight.data.normal_(mean=0.0, std=std) - if module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.Embedding): - module.weight.data.normal_(mean=0.0, std=std) - if module.padding_idx is not None: - module.weight.data[module.padding_idx].zero_() - - def _set_gradient_checkpointing(self, module, value=False): - if isinstance(module, LlamaModel): - module.gradient_checkpointing = value - - -LLAMA_INPUTS_DOCSTRING = r""" - Args: - input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): - Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide - it. - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - [What are input IDs?](../glossary#input-ids) - attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see - `past_key_values`). - - If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] - and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more - information on the default strategy. - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, - config.n_positions - 1]`. - - [What are position IDs?](../glossary#position-ids) - past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape - `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape - `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. - - Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention - blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. - - If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that - don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all - `decoder_input_ids` of shape `(batch_size, sequence_length)`. - inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This - is useful if you want more control over how to convert `input_ids` indices into associated vectors than the - model's internal embedding lookup matrix. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see - `past_key_values`). - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. -""" - - -@add_start_docstrings( - "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", - LLAMA_START_DOCSTRING, -) -class LlamaModel(LlamaPreTrainedModel): - """ - Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] - - Args: - config: LlamaConfig - """ - - def __init__(self, config: LlamaConfig): - super().__init__(config) - self.padding_idx = config.pad_token_id - self.vocab_size = config.vocab_size - - self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) - self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]) - self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) - - self.gradient_checkpointing = False - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.embed_tokens - - def set_input_embeddings(self, value): - self.embed_tokens = value - - # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask - def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): - # create causal mask - # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] - combined_attention_mask = None - if input_shape[-1] > 1: - combined_attention_mask = _make_causal_mask( - input_shape, - inputs_embeds.dtype, - device=inputs_embeds.device, - past_key_values_length=past_key_values_length, - ) - - if attention_mask is not None: - # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] - expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( - inputs_embeds.device - ) - combined_attention_mask = ( - expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask - ) - - return combined_attention_mask - - @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - query_embeds: Optional[torch.FloatTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutputWithPast]: - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - use_cache = use_cache if use_cache is not None else self.config.use_cache - - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - # retrieve input_ids and inputs_embeds - if input_ids is not None and inputs_embeds is not None: - raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") - elif input_ids is not None: - batch_size, seq_length = input_ids.shape - elif inputs_embeds is not None: - batch_size, seq_length, _ = inputs_embeds.shape - else: - raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") - - if inputs_embeds is None: - inputs_embeds = self.embed_tokens(input_ids) - if query_embeds is not None: - inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1) - batch_size, seq_length, _ = inputs_embeds.shape - - seq_length_with_past = seq_length - past_key_values_length = 0 - - if past_key_values is not None: - past_key_values_length = past_key_values[0][0].shape[2] - seq_length_with_past = seq_length_with_past + past_key_values_length - - if position_ids is None: - device = input_ids.device if input_ids is not None else inputs_embeds.device - position_ids = torch.arange( - past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device - ) - position_ids = position_ids.unsqueeze(0).view(-1, seq_length) - else: - position_ids = position_ids.view(-1, seq_length).long() - - # embed positions - if attention_mask is None: - attention_mask = torch.ones( - (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device - ) - attention_mask = self._prepare_decoder_attention_mask( - attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length - ) - - hidden_states = inputs_embeds - - if self.gradient_checkpointing and self.training: - if use_cache: - logger.warning_once( - "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." - ) - use_cache = False - - # decoder layers - all_hidden_states = () if output_hidden_states else None - all_self_attns = () if output_attentions else None - next_decoder_cache = () if use_cache else None - - for idx, decoder_layer in enumerate(self.layers): - if output_hidden_states: - all_hidden_states += (hidden_states,) - - past_key_value = past_key_values[idx] if past_key_values is not None else None - - if self.gradient_checkpointing and self.training: - - def create_custom_forward(module): - def custom_forward(*inputs): - # None for past_key_value - return module(*inputs, output_attentions, None) - - return custom_forward - - layer_outputs = torch.utils.checkpoint.checkpoint( - create_custom_forward(decoder_layer), - hidden_states, - attention_mask, - position_ids, - None, - ) - else: - layer_outputs = decoder_layer( - hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - ) - - hidden_states = layer_outputs[0] - - if use_cache: - next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) - - if output_attentions: - all_self_attns += (layer_outputs[1],) - - hidden_states = self.norm(hidden_states) - - # add hidden states from the last decoder layer - if output_hidden_states: - all_hidden_states += (hidden_states,) - - next_cache = next_decoder_cache if use_cache else None - if not return_dict: - return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) - return BaseModelOutputWithPast( - last_hidden_state=hidden_states, - past_key_values=next_cache, - hidden_states=all_hidden_states, - attentions=all_self_attns, - ) - - -class LlamaForCausalLM(LlamaPreTrainedModel): - def __init__(self, config): - super().__init__(config) - self.model = LlamaModel(config) - - self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.embed_tokens - - def set_input_embeddings(self, value): - self.model.embed_tokens = value - - def get_output_embeddings(self): - return self.lm_head - - def set_output_embeddings(self, new_embeddings): - self.lm_head = new_embeddings - - def set_decoder(self, decoder): - self.model = decoder - - def get_decoder(self): - return self.model +class LlamaForCausalLM(LlamaForCausalLMOrig): @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) @@ -633,12 +22,12 @@ class LlamaForCausalLM(LlamaPreTrainedModel): position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, - query_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, + reduction: Optional[str] = "mean", ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: @@ -657,13 +46,13 @@ class LlamaForCausalLM(LlamaPreTrainedModel): >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) - >>> prompt = "Hey, are you consciours? Can you talk to me?" + >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] - "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions @@ -679,7 +68,6 @@ class LlamaForCausalLM(LlamaPreTrainedModel): position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, - query_embeds=query_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, @@ -687,7 +75,13 @@ class LlamaForCausalLM(LlamaPreTrainedModel): ) hidden_states = outputs[0] - logits = self.lm_head(hidden_states) + if self.config.pretraining_tp > 1: + lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) + logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] + logits = torch.cat(logits, dim=-1) + else: + logits = self.lm_head(hidden_states) + logits = logits.float() loss = None if labels is not None: @@ -695,12 +89,14 @@ class LlamaForCausalLM(LlamaPreTrainedModel): shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens - loss_fct = CrossEntropyLoss() + loss_fct = CrossEntropyLoss(reduction=reduction) shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) + if reduction == "none": + loss = loss.view(logits.size(0), -1).mean(1) if not return_dict: output = (logits,) + outputs[1:] @@ -713,43 +109,3 @@ class LlamaForCausalLM(LlamaPreTrainedModel): hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) - - def prepare_inputs_for_generation( - self, input_ids, query_embeds=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs - ): - if past_key_values: - input_ids = input_ids[:, -1:] - - position_ids = kwargs.get("position_ids", None) - if attention_mask is not None and position_ids is None: - # create position_ids on the fly for batch generation - position_ids = attention_mask.long().cumsum(-1) - 1 - position_ids.masked_fill_(attention_mask == 0, 1) - if past_key_values: - position_ids = position_ids[:, -1].unsqueeze(-1) - query_embeds = None - - # if `inputs_embeds` are passed, we only want to use them in the 1st generation step - if inputs_embeds is not None and past_key_values is None: - model_inputs = {"inputs_embeds": inputs_embeds} - else: - model_inputs = {"input_ids": input_ids} - - model_inputs.update( - { - "position_ids": position_ids, - "query_embeds": query_embeds, - "past_key_values": past_key_values, - "use_cache": kwargs.get("use_cache"), - "attention_mask": attention_mask, - } - ) - return model_inputs - - @staticmethod - def _reorder_cache(past_key_values, beam_idx): - reordered_past = () - for layer_past in past_key_values: - reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) - return reordered_past -