diff --git a/.gitignore b/.gitignore index 50d0c3e..7120f43 100755 --- a/.gitignore +++ b/.gitignore @@ -174,7 +174,8 @@ prompts/ output/ ckpt/ divide_vqa.py +jobs/ - +*.slurm slurm* sbatch_generate* \ No newline at end of file diff --git a/dataset/Evaluation.md b/dataset/Evaluation.md new file mode 100644 index 0000000..34118f3 --- /dev/null +++ b/dataset/Evaluation.md @@ -0,0 +1,26 @@ + +### OKVQA + +### GQA +Images and question-answer pairs will be loaded during the evaluation. + +``` python run_eval.py xxxx ``` + +### VSR +Images and question-answer pairs will be loaded during the evaluation. + +``` python run_eval.py xxxx ``` + +### IconVQA + +### VizWiz +1. Download [`test.json`](https://vizwiz.cs.colorado.edu/VizWiz_final/vqa_data/Annotations.zip) and extract [`test.zip`](https://vizwiz.cs.colorado.edu/VizWiz_final/images/test.zip) to `test`. Put them under `your_path/vizwiz`. +2. Single-GPU inference. +``` python run_eval.py xxxx ``` + +### HM + + + + + diff --git a/dataset/README_MINIGPTv2_FINETUNE.md b/dataset/README_MINIGPTv2_FINETUNE.md index 2d5c825..5da190b 100644 --- a/dataset/README_MINIGPTv2_FINETUNE.md +++ b/dataset/README_MINIGPTv2_FINETUNE.md @@ -1,133 +1,253 @@ ## Download the COCO captions, RefCOCO, RefCOCO+. RefCOCOg, visual genome, textcaps, LLaVA, gqa, AOK-VQA, OK-VQA, OCR-VQA, filtered Flickr-30k, multi-task conversation, and Unnatural instruction datasets + +Download the dataset + +Image source | Download path +--- | :---: +COCO 2014 images | images    captions +COCO VQA | vqa train    vqa val +Visual Genome | images part1 images part2 +TextCaps | images annotations +RefCOCO | annotations +RefCOCO+ | annotations +RefCOCOg | annotations +LLaVA | Compelex reasoning    Detailed description    Conversation +OKVQA | annotations +AOK-VQA | annotations +OCR-VQA | annotations +Filtered Flickr-30k | annotations +Multi-task conversation | annotations +Filtered unnatural instruction | annotations + + + ### COCO captions +Download the COCO 2014 images and captions -### RefCOCO, RefCOCO+, RefCOCOg +``` +├── ${MINIGPTv2_DATASET} +│ ├── coco_captions +│ ├── coco_images +| ├── annotations +| ├── coco_karpathy_train.json + +``` + +Set **image_path** to the COCO 2014 image folder. +Similarly, set **ann_path** to the coco_karpathy_train.json path +- [minigpt4/configs/datasets/coco/caption.yaml](../minigpt4/configs/datasets/coco/caption.yaml) + +### COCO VQA +Download the vqa v2 train and validation json files + +``` +├── ${MINIGPTv2_DATASET} +│ ├── vqav2 +│ ├── vqa_train.json +| ├── vqa_val.json +``` + +Set **image_path** to the COCO 2014 image folder. +Similarly, set **ann_path** to the vqa_train.json and vqa_val.json path +- [minigpt4/configs/datasets/coco/defaults_vqa.yaml](../minigpt4/configs/datasets/coco/defaults_vqa.yaml) + ### Visual genome +Download visiual genome images and annotation files + +``` +├── ${MINIGPTv2_DATASET} +│ ├── visual_genome +│ ├── VG_100K +│ ├── VG_100K_2 +| ├── region_descriptions.json +``` + +Set **image_path** to visual_genome folder. +Similarly, set **ann_path** to to visual_genome folder. + +- [minigpt4/configs/datasets/vg/ref.yaml](../minigpt4/configs/datasets/vg/ref.yaml) + + +### TextCaps +Download the TextCaps images and annotation files + +``` +├── ${MINIGPTv2_DATASET} +│ ├── TextCaps +│ ├── train_images +│ ├── TextCaps_0.1_train.json +``` + +Set **image_path** to TextCaps train_images folder. +Similarly, set **ann_path** to the TextCaps_0.1_train.json path + +- [minigpt4/configs/datasets/textcaps/caption.yaml](../minigpt4/configs/datasets/textcaps/caption.yaml) + +### RefCOCO, RefCOCO+, RefCOCOg +Download the RefCOCO, RefCOCO+, RefCOCOg annotation files + +``` +Location_you_like +├── ${MINIGPTv2_DATASET} +│ ├── refcoco_annotations +│ ├── refcoco +| ├── instances.json +| ├── refs(google).p +| ├── refs(unc).p +│ ├── refcoco+ +| ├── instances.json +| ├── refs(unc).p +│ ├── refcocog +| ├── instances.json +| ├── refs(google).p +| ├── refs(und).p +``` + + +Set **image_path** to the COCO 2014 image folder. +Similarly, set **ann_path** in all the following configs to the above folder (Location_you_like) that contains refcoco, refcoco+, and refcocog. + +- [minigpt4/configs/datasets/coco_bbox/refcoco.yaml](../minigpt4/configs/datasets/coco_bbox/refcoco.yaml) +- [minigpt4/configs/datasets/coco_bbox/refcocog.yaml](../minigpt4/configs/datasets/coco_bbox/refcocog.yaml) +- [minigpt4/configs/datasets/coco_bbox/refcocop.yaml](../minigpt4/configs/datasets/coco_bbox/refcocop.yaml) +- [minigpt4/configs/datasets/coco_bbox/invrefcoco.yaml](../minigpt4/configs/datasets/coco_bbox/invrefcoco.yaml) +- [minigpt4/configs/datasets/coco_bbox/invrefcocog.yaml](../minigpt4/configs/datasets/coco_bbox/invrefcocog.yaml) +- [minigpt4/configs/datasets/coco_bbox/invrefcocop.yaml](../minigpt4/configs/datasets/coco_bbox/invrefcocop.yaml) -### textcaps ### LLaVA -### gqa +``` +Location_you_like +├── ${MINIGPTv2_DATASET} +│ ├── llava +│ ├── conversation_58k.json +│ ├── detail_23k.json +│ ├── complex_reasoning_77k.json +``` + +Set **image_path** to the COCO 2014 image folder. +Similarly, set **ann_path** to the location of the previous downloaded conversation_58k.json, +detail_23k.json, and complex_reasoning_77k.json in conversation.yaml, detail.yaml, and reason.yaml, respectively. + + +- [minigpt4/configs/datasets/llava/conversation.yaml](../minigpt4/configs/datasets/llava/conversation.yaml) +- [minigpt4/configs/datasets/llava/detail.yaml](../minigpt4/configs/datasets/llava/detail.yaml) +- [minigpt4/configs/datasets/llava/reason.yaml](../minigpt4/configs/datasets/llava/reason.yaml) + ### OKVQA + +``` +Location_you_like +├── ${MINIGPTv2_DATASET} +│ ├── OKVQA +│ ├── okvqa_train.json +``` + +Set **image_path** to the COCO 2014 image folder. +Similarly, set **ann_path** to the location of the OKVQA dataset +- [minigpt4/configs/datasets/okvqa/defaults.yaml](../minigpt4/configs/datasets/okvqa/defaults.yaml) + + +### COCO-VQA + +- [OK-VQA Input Questions](https://okvqa.allenai.org/static/data/OpenEnded_mscoco_train2014_questions.json.zip) +- [OK-VQA Annotations](https://okvqa.allenai.org/static/data/mscoco_train2014_annotations.json.zip) + + ### AOK-VQA +Download the AOK-VQA annotation dataset + +``` +export AOKVQA_DIR=YOUR_DATASET_PATH +mkdir -p ${AOKVQA_DIR} +curl -fsSL https://prior-datasets.s3.us-east-2.amazonaws.com/aokvqa/aokvqa_v1p0.tar.gz | tar xvz -C ${AOKVQA_DIR} +``` + +``` +Location_you_like +├── ${MINIGPTv2_DATASET} +│ ├── AOKVQA +│ ├── aokvqa_v1p0_train.json +``` + + +Set **image_path** to the COCO 2014 image folder. +Similarly, set **ann_path** to the location of the AOKVQA dataset +- [minigpt4/configs/datasets/aokvqa/defaults.yaml](../minigpt4/configs/datasets/aokvqa/defaults.yaml) + + ### OCR-VQA +Download the OCR-VQA annotation files + +``` +Location_you_like +├── ${MINIGPTv2_DATASET} +│ ├── OCR-VQA +│ ├── images +│ ├── dataset.json +``` + +Set **image_path** as the OCR-VQA image folder. +Similarly, set **ann_path** to the lhe OCR-VQA dataset.json +- [minigpt4/configs/datasets/ocrvqa/ocrvqa.yaml](../minigpt4/configs/datasets/ocrvqa/ocrvqa.yaml) + + ### filtered Flickr-30k +Download filtered Flickr-30k images and annotation files + +``` +Location_you_like +├── ${MINIGPTv2_DATASET} +│ ├── filtered_flickr +│ ├── images +│ ├── captiontobbox.json +│ ├── groundedcaption.json +│ ├── phrasetobbox.json +``` + +Set **image_path** as the flickr-30k images foler. +Similarly, set **ann_path** to the groundedcaption.json, captiontobbox.json and phrasetobbox.json for the +grounded image caption, caption to bbox, and phrase to bbox datasets. + +- [minigpt4/configs/datasets/flickr/default.yaml](../minigpt4/configs/datasets/flickr/default.yaml) +- [minigpt4/configs/datasets/flickr/caption_to_phrase.yaml](../minigpt4/configs/datasets/flickr/caption_to_phrase.yaml) +- [minigpt4/configs/datasets/flickr/object_to_phrase.yaml](../minigpt4/configs/datasets/flickr/object_to_phrase.yaml) + ### Multi-task conversation +Download the multi-task converstation dataset + +``` +Location_you_like +├── ${MINIGPTv2_DATASET} +│ ├── multitask_conversation +│ ├── multitask_conversation.json +``` + +Set **image_path** as the COCO 2014 images folder. +Similarly, set **ann_path** to the multitask_conversation.json file path + +- [minigpt4/configs/datasets/multitask_conversation/default.yaml](../minigpt4/configs/datasets/multitask_conversation/default.yaml) ### Unnatural instruction - - - - - - - - - - - - - -### Pre-training datasets download: -We use the filtered synthetic captions prepared by BLIP. For more details about the dataset, please refer to [BLIP](https://github.com/salesforce/BLIP). - -It requires ~2.3T to store LAION and CC3M+CC12M+SBU datasets - -Image source | Filtered synthetic caption by ViT-L ---- | :---: -CC3M+CC12M+SBU | Download -LAION115M | Download - -This will download two json files -``` -ccs_synthetic_filtered_large.json -laion_synthetic_filtered_large.json -``` - -## prepare the data step-by-step - - -### setup the dataset folder and move the annotation file to the data storage folder -``` -export MINIGPT4_DATASET=/YOUR/PATH/FOR/LARGE/DATASET/ -mkdir ${MINIGPT4_DATASET}/cc_sbu -mkdir ${MINIGPT4_DATASET}/laion -mv ccs_synthetic_filtered_large.json ${MINIGPT4_DATASET}/cc_sbu -mv laion_synthetic_filtered_large.json ${MINIGPT4_DATASET}/laion -``` - -### Convert the scripts to data storate folder -``` -cp convert_cc_sbu.py ${MINIGPT4_DATASET}/cc_sbu -cp download_cc_sbu.sh ${MINIGPT4_DATASET}/cc_sbu -cp convert_laion.py ${MINIGPT4_DATASET}/laion -cp download_laion.sh ${MINIGPT4_DATASET}/laion -``` - - -### Convert the laion and cc_sbu annotation file format to be img2dataset format -``` -cd ${MINIGPT4_DATASET}/cc_sbu -python convert_cc_sbu.py - -cd ${MINIGPT4_DATASET}/laion -python convert_laion.py -``` - -### Download the datasets with img2dataset -``` -cd ${MINIGPT4_DATASET}/cc_sbu -sh download_cc_sbu.sh -cd ${MINIGPT4_DATASET}/laion -sh download_laion.sh -``` - - -The final dataset structure +Download the filtered unnatural instruction annotation files (we remove the very long sentences from the original unnatural instruction dataset) ``` -. -├── ${MINIGPT4_DATASET} -│ ├── cc_sbu -│ ├── convert_cc_sbu.py -│ ├── download_cc_sbu.sh -│ ├── ccs_synthetic_filtered_large.json -│ ├── ccs_synthetic_filtered_large.tsv -│ └── cc_sbu_dataset -│ ├── 00000.tar -│ ├── 00000.parquet -│ ... -│ ├── laion -│ ├── convert_laion.py -│ ├── download_laion.sh -│ ├── laion_synthetic_filtered_large.json -│ ├── laion_synthetic_filtered_large.tsv -│ └── laion_dataset -│ ├── 00000.tar -│ ├── 00000.parquet -│ ... -... +Location_you_like +├── ${MINIGPTv2_DATASET} +│ ├── unnatural-instructions +│ ├── filtered_unnatural_instruction.json ``` +There is no image path. +Similarly, set **ann_path** to the filtered_unnatural_instruction.json file path -## Set up the dataset configuration files - -Then, set up the LAION dataset loading path in -[here](../minigpt4/configs/datasets/laion/defaults.yaml#L5) at Line 5 as -${MINIGPT4_DATASET}/laion/laion_dataset/{00000..10488}.tar - -and the Conceptual Captoin and SBU datasets loading path in -[here](../minigpt4/configs/datasets/cc_sbu/defaults.yaml#L5) at Line 5 as -${MINIGPT4_DATASET}/cc_sbu/cc_sbu_dataset/{00000..01255}.tar - - - +- [minigpt4/configs/datasets/nlp/unnatural_instruction.yaml](../minigpt4/configs/datasets/nlp/unnatural_instruction.yaml) \ No newline at end of file diff --git a/minigpt4/models/modeling_llama.py b/minigpt4/models/modeling_llama.py index 6d28020..5d59a53 100644 --- a/minigpt4/models/modeling_llama.py +++ b/minigpt4/models/modeling_llama.py @@ -75,7 +75,7 @@ class LlamaForCausalLM(LlamaForCausalLMOrig): ) hidden_states = outputs[0] - if self.config.pretraining_tp > 1: + if hasattr(self.config, 'pretraining_tp') and self.config.pretraining_tp > 1: lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] logits = torch.cat(logits, dim=-1) diff --git a/train_configs/minigpt_v2_finetune.yaml b/train_configs/minigpt_v2_finetune.yaml index 4039ea6..89d595a 100644 --- a/train_configs/minigpt_v2_finetune.yaml +++ b/train_configs/minigpt_v2_finetune.yaml @@ -11,7 +11,6 @@ model: ckpt: "/ibex/project/c2090/minigpt4_ckpt/448_perforamnce_correct_v10_vg/20230925064/checkpoint_32.pth" use_grad_checkpoint: True chat_template: True - # wanda_log: False lora_r: 64 lora_alpha: 16