mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-04 01:50:47 +00:00
update evaluation readme
This commit is contained in:
parent
09917dbd17
commit
76cad1ebfd
@ -5,8 +5,8 @@ model:
|
||||
end_sym: "</s>"
|
||||
low_resource: False
|
||||
prompt_template: '[INST] {} [/INST]'
|
||||
llama_model: ""
|
||||
ckpt: ""
|
||||
llama_model: "/ibex/project/c2133/llama_v2/llama-2-7b-chat-pytorch_update"
|
||||
ckpt: "/ibex/project/c2133/minigpt_checkpoints/checkpoint_stage3_correct/checkpoint_10.pth"
|
||||
lora_r: 64
|
||||
lora_alpha: 16
|
||||
|
||||
@ -21,14 +21,66 @@ datasets:
|
||||
train:
|
||||
name: "blip_caption"
|
||||
|
||||
evaluation_datasets:
|
||||
refcoco:
|
||||
eval_file_path: /ibex/project/c2133/minigpt4_v2_dataset
|
||||
img_path: /ibex/ai/reference/CV/COCO/cocoapi/data/2014/images/jpeg/train
|
||||
save_path: results/refcoco.json
|
||||
max_new_tokens: 20
|
||||
batch_size: 10
|
||||
refcocog:
|
||||
eval_file_path: /path/to/eval/annotation/path
|
||||
img_path: /path/to/eval/image/path
|
||||
save_path: /path/to/save/path
|
||||
max_new_tokens: 20
|
||||
batch_size: 10
|
||||
refcoco+:
|
||||
eval_file_path: /path/to/eval/annotation/path
|
||||
img_path: /path/to/eval/image/path
|
||||
save_path: /path/to/save/path
|
||||
max_new_tokens: 20
|
||||
batch_size: 10
|
||||
gqa:
|
||||
eval_file_path: /path/to/eval/annotation/path
|
||||
img_path: /path/to/eval/image/path
|
||||
save_path: /path/to/save/path
|
||||
max_new_tokens: 20
|
||||
batch_size: 10
|
||||
okvqa:
|
||||
eval_file_path: /path/to/eval/annotation/path
|
||||
img_path: /path/to/eval/image/path
|
||||
save_path: /path/to/save/path
|
||||
max_new_tokens: 20
|
||||
batch_size: 10
|
||||
vizwiz:
|
||||
eval_file_path: /path/to/eval/annotation/path
|
||||
img_path: /path/to/eval/image/path
|
||||
save_path: /path/to/save/path
|
||||
max_new_tokens: 20
|
||||
batch_size: 10
|
||||
iconvqa:
|
||||
eval_file_path: /path/to/eval/annotation/path
|
||||
img_path: /path/to/eval/image/path
|
||||
save_path: /path/to/save/path
|
||||
max_new_tokens: 20
|
||||
batch_size: 10
|
||||
vsr:
|
||||
eval_file_path: cambridgeltl/vsr_zeroshot
|
||||
img_path: /path/to/eval/image/path
|
||||
save_path: /path/to/save/path
|
||||
max_new_tokens: 20
|
||||
batch_size: 10
|
||||
hm:
|
||||
eval_file_path: /path/to/eval/annotation/path
|
||||
img_path: /path/to/eval/image/path
|
||||
save_path: /path/to/save/path
|
||||
max_new_tokens: 20
|
||||
batch_size: 10
|
||||
|
||||
run:
|
||||
task: image_text_pretrain
|
||||
max_new_tokens: 20
|
||||
name: minigptv2_evaluation
|
||||
batch_size: 10
|
||||
eval_file_path: /path/to/eval/annotation/path # annotation file
|
||||
img_path: /path/to/eval/image/path # image file path
|
||||
save_path: /path/to/save/path # saved result
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -80,7 +80,7 @@ dataset names:
|
||||
|
||||
```
|
||||
torchrun --master-port ${port} --nproc_per_node 1 eval_ref.py \
|
||||
--cfg-path ${cfg_path} --dataset dataset_name
|
||||
--cfg-path ${cfg_path} --dataset dataset_name --resample
|
||||
```
|
||||
|
||||
|
||||
|
@ -30,6 +30,7 @@ eval_dict = {'refcoco': ['val','testA','testB'],
|
||||
'refcoco+': ['val','testA','testB'],
|
||||
'refcocog': ['val','test']}
|
||||
|
||||
|
||||
model, vis_processor = init_model(args)
|
||||
model.eval()
|
||||
CONV_VISION = CONV_VISION_minigptv2
|
||||
@ -39,13 +40,17 @@ conv_temp.system = ""
|
||||
#
|
||||
model.eval()
|
||||
|
||||
eval_file_path = cfg.run_cfg.eval_file_path
|
||||
img_path = cfg.run_cfg.img_path
|
||||
batch_size = cfg.run_cfg.batch_size
|
||||
max_new_tokens = cfg.run_cfg.max_new_tokens
|
||||
|
||||
|
||||
for dataset in args.dataset:
|
||||
for split in eval_dict[dataset]:
|
||||
|
||||
eval_file_path = cfg.evaluation_datasets_cfg[dataset]["eval_file_path"]
|
||||
img_path = cfg.evaluation_datasets_cfg[dataset]["img_path"]
|
||||
batch_size = cfg.evaluation_datasets_cfg[dataset]["batch_size"]
|
||||
max_new_tokens = cfg.evaluation_datasets_cfg[dataset]["max_new_tokens"]
|
||||
save_path = cfg.evaluation_datasets_cfg[dataset]["save_path"]
|
||||
|
||||
with open(os.path.join(eval_file_path,f"{dataset}/{dataset}_{split}.json"), 'r') as f:
|
||||
refcoco = json.load(f)
|
||||
|
||||
@ -83,7 +88,7 @@ for dataset in args.dataset:
|
||||
if len(resamples) == 0:
|
||||
break
|
||||
|
||||
with open(save_path,'w') as f:
|
||||
with open(os.path.join(save_path,f"{args.dataset}_{split}.json"),'w') as f:
|
||||
json.dump(minigpt4_predict, f)
|
||||
|
||||
count=0
|
||||
|
@ -36,15 +36,18 @@ conv_temp = CONV_VISION_minigptv2.copy()
|
||||
conv_temp.system = ""
|
||||
model.eval()
|
||||
|
||||
eval_file_path = cfg.run_cfg.eval_file_path
|
||||
img_path=cfg.run_cfg.img_path
|
||||
save_path = cfg.run_cfg.save_path
|
||||
batch_size = cfg.run_cfg.batch_size
|
||||
max_new_tokens = cfg.run_cfg.max_new_tokens
|
||||
|
||||
|
||||
if 'okvqa' in args.dataset:
|
||||
evaluation_annntation_path = os.path.join(eval_file_path, "okvqa_test_split.json")
|
||||
with open(evaluation_annntation_path) as f:
|
||||
|
||||
eval_file_path = cfg.evaluation_datasets_cfg["okvqa"]["eval_file_path"]
|
||||
img_path = cfg.evaluation_datasets_cfg["okvqa"]["img_path"]
|
||||
batch_size = cfg.evaluation_datasets_cfg["okvqa"]["batch_size"]
|
||||
max_new_tokens = cfg.evaluation_datasets_cfg["okvqa"]["max_new_tokens"]
|
||||
save_path = cfg.evaluation_datasets_cfg["okvqa"]["save_path"]
|
||||
|
||||
# evaluation_annntation_path = os.path.join(eval_file_path, "okvqa_test_split.json")
|
||||
with open(eval_file_path) as f:
|
||||
ok_vqa_test_split = json.load(f)
|
||||
|
||||
data = OKVQAEvalData(ok_vqa_test_split, vis_processor, img_path)
|
||||
@ -76,6 +79,13 @@ if 'okvqa' in args.dataset:
|
||||
print ("Overall OKVQA Accuracy is: %.02f\n" %(vqaEval.accuracy['overall']), flush=True)
|
||||
|
||||
if 'vizwiz' in args.dataset:
|
||||
|
||||
eval_file_path = cfg.evaluation_datasets_cfg["vizwiz"]["eval_file_path"]
|
||||
img_path = cfg.evaluation_datasets_cfg["vizwiz"]["img_path"]
|
||||
batch_size = cfg.evaluation_datasets_cfg["vizwiz"]["batch_size"]
|
||||
max_new_tokens = cfg.evaluation_datasets_cfg["vizwiz"]["max_new_tokens"]
|
||||
save_path = cfg.evaluation_datasets_cfg["vizwiz"]["save_path"]
|
||||
|
||||
vizwiz = json.load(open(eval_file_path, 'r'))
|
||||
|
||||
data = VizWizEvalData(vizwiz, vis_processor, img_path)
|
||||
@ -105,6 +115,14 @@ if 'vizwiz' in args.dataset:
|
||||
|
||||
|
||||
if 'iconvqa' in args.dataset:
|
||||
|
||||
eval_file_path = cfg.evaluation_datasets_cfg["iconvqa"]["eval_file_path"]
|
||||
img_path = cfg.evaluation_datasets_cfg["iconvqa"]["img_path"]
|
||||
batch_size = cfg.evaluation_datasets_cfg["iconvqa"]["batch_size"]
|
||||
max_new_tokens = cfg.evaluation_datasets_cfg["iconvqa"]["max_new_tokens"]
|
||||
save_path = cfg.evaluation_datasets_cfg["iconvqa"]["save_path"]
|
||||
|
||||
|
||||
iconqa_text_val = json.load(open(eval_file_path,"r"))
|
||||
|
||||
data = IconQAEvalData(iconqa_text_val, vis_processor, img_path)
|
||||
@ -127,6 +145,13 @@ if 'iconvqa' in args.dataset:
|
||||
|
||||
|
||||
if 'gqa' in args.dataset:
|
||||
|
||||
eval_file_path = cfg.evaluation_datasets_cfg["gqa"]["eval_file_path"]
|
||||
img_path = cfg.evaluation_datasets_cfg["gqa"]["img_path"]
|
||||
batch_size = cfg.evaluation_datasets_cfg["gqa"]["batch_size"]
|
||||
max_new_tokens = cfg.evaluation_datasets_cfg["gqa"]["max_new_tokens"]
|
||||
save_path = cfg.evaluation_datasets_cfg["gqa"]["save_path"]
|
||||
|
||||
gqa = json.load(open(eval_file_path))
|
||||
data = GQAEvalData(gqa, vis_processor, img_path)
|
||||
eval_dataloader = DataLoader(data, batch_size=batch_size, shuffle=False)
|
||||
@ -151,6 +176,12 @@ if 'gqa' in args.dataset:
|
||||
json.dump(minigpt4_predict, f)
|
||||
|
||||
if 'vsr' in args.dataset:
|
||||
|
||||
img_path = cfg.evaluation_datasets_cfg["vsr"]["img_path"]
|
||||
batch_size = cfg.evaluation_datasets_cfg["vsr"]["batch_size"]
|
||||
max_new_tokens = cfg.evaluation_datasets_cfg["vsr"]["max_new_tokens"]
|
||||
save_path = cfg.evaluation_datasets_cfg["vsr"]["save_path"]
|
||||
|
||||
annotation = load_dataset("cambridgeltl/vsr_zeroshot", split='test')
|
||||
data = VSREvalData(annotation, vis_processor, img_path)
|
||||
eval_dataloader = DataLoader(data, batch_size=batch_size, shuffle=False)
|
||||
@ -176,6 +207,13 @@ if 'vsr' in args.dataset:
|
||||
json.dump(minigpt4_predict, f)
|
||||
|
||||
if 'hm' in args.dataset:
|
||||
|
||||
eval_file_path = cfg.evaluation_datasets_cfg["hm"]["eval_file_path"]
|
||||
img_path = cfg.evaluation_datasets_cfg["hm"]["img_path"]
|
||||
batch_size = cfg.evaluation_datasets_cfg["hm"]["batch_size"]
|
||||
max_new_tokens = cfg.evaluation_datasets_cfg["hm"]["max_new_tokens"]
|
||||
save_path = cfg.evaluation_datasets_cfg["hm"]["save_path"]
|
||||
|
||||
annotation = []
|
||||
with open(eval_file_path, 'r') as jsonl_file:
|
||||
for line in jsonl_file:
|
||||
|
@ -29,6 +29,7 @@ class Config:
|
||||
runner_config = self.build_runner_config(config)
|
||||
model_config = self.build_model_config(config, **user_config)
|
||||
dataset_config = self.build_dataset_config(config)
|
||||
evaluation_dataset_config = self.build_evaluation_dataset_config(config)
|
||||
|
||||
# Validate the user-provided runner configuration
|
||||
# model and dataset configuration are supposed to be validated by the respective classes
|
||||
@ -37,7 +38,7 @@ class Config:
|
||||
|
||||
# Override the default configuration with user options.
|
||||
self.config = OmegaConf.merge(
|
||||
runner_config, model_config, dataset_config, user_config
|
||||
runner_config, model_config, dataset_config,evaluation_dataset_config, user_config
|
||||
)
|
||||
|
||||
def _validate_runner_config(self, runner_config):
|
||||
@ -111,6 +112,28 @@ class Config:
|
||||
|
||||
return dataset_config
|
||||
|
||||
|
||||
@staticmethod
|
||||
def build_evaluation_dataset_config(config):
|
||||
datasets = config.get("evaluation_datasets", None)
|
||||
if datasets is None:
|
||||
raise KeyError(
|
||||
"Expecting 'datasets' as the root key for dataset configuration."
|
||||
)
|
||||
|
||||
dataset_config = OmegaConf.create()
|
||||
|
||||
for dataset_name in datasets:
|
||||
builder_cls = registry.get_builder_class(dataset_name)
|
||||
|
||||
# hierarchy override, customized config > default config
|
||||
dataset_config = OmegaConf.merge(
|
||||
dataset_config,
|
||||
{"evaluation_datasets": {dataset_name: config["evaluation_datasets"][dataset_name]}},
|
||||
)
|
||||
|
||||
return dataset_config
|
||||
|
||||
def _convert_to_dot_list(self, opts):
|
||||
if opts is None:
|
||||
opts = []
|
||||
@ -136,6 +159,10 @@ class Config:
|
||||
def datasets_cfg(self):
|
||||
return self.config.datasets
|
||||
|
||||
@property
|
||||
def evaluation_datasets_cfg(self):
|
||||
return self.config.evaluation_datasets
|
||||
|
||||
@property
|
||||
def model_cfg(self):
|
||||
return self.config.model
|
||||
|
@ -184,7 +184,7 @@ class BaseModel(nn.Module):
|
||||
else:
|
||||
llama_model = LlamaForCausalLM.from_pretrained(
|
||||
llama_model_path,
|
||||
torch_dtype=torch.float32,
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
|
||||
if lora_r > 0:
|
||||
|
Loading…
Reference in New Issue
Block a user