update evaluation readme

This commit is contained in:
junchen14 2023-11-01 11:05:51 +03:00
parent 09917dbd17
commit 76cad1ebfd
6 changed files with 144 additions and 22 deletions

View File

@ -5,8 +5,8 @@ model:
end_sym: "</s>" end_sym: "</s>"
low_resource: False low_resource: False
prompt_template: '[INST] {} [/INST]' prompt_template: '[INST] {} [/INST]'
llama_model: "" llama_model: "/ibex/project/c2133/llama_v2/llama-2-7b-chat-pytorch_update"
ckpt: "" ckpt: "/ibex/project/c2133/minigpt_checkpoints/checkpoint_stage3_correct/checkpoint_10.pth"
lora_r: 64 lora_r: 64
lora_alpha: 16 lora_alpha: 16
@ -21,14 +21,66 @@ datasets:
train: train:
name: "blip_caption" name: "blip_caption"
evaluation_datasets:
refcoco:
eval_file_path: /ibex/project/c2133/minigpt4_v2_dataset
img_path: /ibex/ai/reference/CV/COCO/cocoapi/data/2014/images/jpeg/train
save_path: results/refcoco.json
max_new_tokens: 20
batch_size: 10
refcocog:
eval_file_path: /path/to/eval/annotation/path
img_path: /path/to/eval/image/path
save_path: /path/to/save/path
max_new_tokens: 20
batch_size: 10
refcoco+:
eval_file_path: /path/to/eval/annotation/path
img_path: /path/to/eval/image/path
save_path: /path/to/save/path
max_new_tokens: 20
batch_size: 10
gqa:
eval_file_path: /path/to/eval/annotation/path
img_path: /path/to/eval/image/path
save_path: /path/to/save/path
max_new_tokens: 20
batch_size: 10
okvqa:
eval_file_path: /path/to/eval/annotation/path
img_path: /path/to/eval/image/path
save_path: /path/to/save/path
max_new_tokens: 20
batch_size: 10
vizwiz:
eval_file_path: /path/to/eval/annotation/path
img_path: /path/to/eval/image/path
save_path: /path/to/save/path
max_new_tokens: 20
batch_size: 10
iconvqa:
eval_file_path: /path/to/eval/annotation/path
img_path: /path/to/eval/image/path
save_path: /path/to/save/path
max_new_tokens: 20
batch_size: 10
vsr:
eval_file_path: cambridgeltl/vsr_zeroshot
img_path: /path/to/eval/image/path
save_path: /path/to/save/path
max_new_tokens: 20
batch_size: 10
hm:
eval_file_path: /path/to/eval/annotation/path
img_path: /path/to/eval/image/path
save_path: /path/to/save/path
max_new_tokens: 20
batch_size: 10
run: run:
task: image_text_pretrain task: image_text_pretrain
max_new_tokens: 20
name: minigptv2_evaluation name: minigptv2_evaluation
batch_size: 10
eval_file_path: /path/to/eval/annotation/path # annotation file
img_path: /path/to/eval/image/path # image file path
save_path: /path/to/save/path # saved result

View File

@ -80,7 +80,7 @@ dataset names:
``` ```
torchrun --master-port ${port} --nproc_per_node 1 eval_ref.py \ torchrun --master-port ${port} --nproc_per_node 1 eval_ref.py \
--cfg-path ${cfg_path} --dataset dataset_name --cfg-path ${cfg_path} --dataset dataset_name --resample
``` ```

View File

@ -30,6 +30,7 @@ eval_dict = {'refcoco': ['val','testA','testB'],
'refcoco+': ['val','testA','testB'], 'refcoco+': ['val','testA','testB'],
'refcocog': ['val','test']} 'refcocog': ['val','test']}
model, vis_processor = init_model(args) model, vis_processor = init_model(args)
model.eval() model.eval()
CONV_VISION = CONV_VISION_minigptv2 CONV_VISION = CONV_VISION_minigptv2
@ -39,13 +40,17 @@ conv_temp.system = ""
# #
model.eval() model.eval()
eval_file_path = cfg.run_cfg.eval_file_path
img_path = cfg.run_cfg.img_path
batch_size = cfg.run_cfg.batch_size
max_new_tokens = cfg.run_cfg.max_new_tokens
for dataset in args.dataset: for dataset in args.dataset:
for split in eval_dict[dataset]: for split in eval_dict[dataset]:
eval_file_path = cfg.evaluation_datasets_cfg[dataset]["eval_file_path"]
img_path = cfg.evaluation_datasets_cfg[dataset]["img_path"]
batch_size = cfg.evaluation_datasets_cfg[dataset]["batch_size"]
max_new_tokens = cfg.evaluation_datasets_cfg[dataset]["max_new_tokens"]
save_path = cfg.evaluation_datasets_cfg[dataset]["save_path"]
with open(os.path.join(eval_file_path,f"{dataset}/{dataset}_{split}.json"), 'r') as f: with open(os.path.join(eval_file_path,f"{dataset}/{dataset}_{split}.json"), 'r') as f:
refcoco = json.load(f) refcoco = json.load(f)
@ -83,7 +88,7 @@ for dataset in args.dataset:
if len(resamples) == 0: if len(resamples) == 0:
break break
with open(save_path,'w') as f: with open(os.path.join(save_path,f"{args.dataset}_{split}.json"),'w') as f:
json.dump(minigpt4_predict, f) json.dump(minigpt4_predict, f)
count=0 count=0

View File

@ -36,15 +36,18 @@ conv_temp = CONV_VISION_minigptv2.copy()
conv_temp.system = "" conv_temp.system = ""
model.eval() model.eval()
eval_file_path = cfg.run_cfg.eval_file_path
img_path=cfg.run_cfg.img_path
save_path = cfg.run_cfg.save_path
batch_size = cfg.run_cfg.batch_size
max_new_tokens = cfg.run_cfg.max_new_tokens
if 'okvqa' in args.dataset: if 'okvqa' in args.dataset:
evaluation_annntation_path = os.path.join(eval_file_path, "okvqa_test_split.json")
with open(evaluation_annntation_path) as f: eval_file_path = cfg.evaluation_datasets_cfg["okvqa"]["eval_file_path"]
img_path = cfg.evaluation_datasets_cfg["okvqa"]["img_path"]
batch_size = cfg.evaluation_datasets_cfg["okvqa"]["batch_size"]
max_new_tokens = cfg.evaluation_datasets_cfg["okvqa"]["max_new_tokens"]
save_path = cfg.evaluation_datasets_cfg["okvqa"]["save_path"]
# evaluation_annntation_path = os.path.join(eval_file_path, "okvqa_test_split.json")
with open(eval_file_path) as f:
ok_vqa_test_split = json.load(f) ok_vqa_test_split = json.load(f)
data = OKVQAEvalData(ok_vqa_test_split, vis_processor, img_path) data = OKVQAEvalData(ok_vqa_test_split, vis_processor, img_path)
@ -76,6 +79,13 @@ if 'okvqa' in args.dataset:
print ("Overall OKVQA Accuracy is: %.02f\n" %(vqaEval.accuracy['overall']), flush=True) print ("Overall OKVQA Accuracy is: %.02f\n" %(vqaEval.accuracy['overall']), flush=True)
if 'vizwiz' in args.dataset: if 'vizwiz' in args.dataset:
eval_file_path = cfg.evaluation_datasets_cfg["vizwiz"]["eval_file_path"]
img_path = cfg.evaluation_datasets_cfg["vizwiz"]["img_path"]
batch_size = cfg.evaluation_datasets_cfg["vizwiz"]["batch_size"]
max_new_tokens = cfg.evaluation_datasets_cfg["vizwiz"]["max_new_tokens"]
save_path = cfg.evaluation_datasets_cfg["vizwiz"]["save_path"]
vizwiz = json.load(open(eval_file_path, 'r')) vizwiz = json.load(open(eval_file_path, 'r'))
data = VizWizEvalData(vizwiz, vis_processor, img_path) data = VizWizEvalData(vizwiz, vis_processor, img_path)
@ -105,6 +115,14 @@ if 'vizwiz' in args.dataset:
if 'iconvqa' in args.dataset: if 'iconvqa' in args.dataset:
eval_file_path = cfg.evaluation_datasets_cfg["iconvqa"]["eval_file_path"]
img_path = cfg.evaluation_datasets_cfg["iconvqa"]["img_path"]
batch_size = cfg.evaluation_datasets_cfg["iconvqa"]["batch_size"]
max_new_tokens = cfg.evaluation_datasets_cfg["iconvqa"]["max_new_tokens"]
save_path = cfg.evaluation_datasets_cfg["iconvqa"]["save_path"]
iconqa_text_val = json.load(open(eval_file_path,"r")) iconqa_text_val = json.load(open(eval_file_path,"r"))
data = IconQAEvalData(iconqa_text_val, vis_processor, img_path) data = IconQAEvalData(iconqa_text_val, vis_processor, img_path)
@ -127,6 +145,13 @@ if 'iconvqa' in args.dataset:
if 'gqa' in args.dataset: if 'gqa' in args.dataset:
eval_file_path = cfg.evaluation_datasets_cfg["gqa"]["eval_file_path"]
img_path = cfg.evaluation_datasets_cfg["gqa"]["img_path"]
batch_size = cfg.evaluation_datasets_cfg["gqa"]["batch_size"]
max_new_tokens = cfg.evaluation_datasets_cfg["gqa"]["max_new_tokens"]
save_path = cfg.evaluation_datasets_cfg["gqa"]["save_path"]
gqa = json.load(open(eval_file_path)) gqa = json.load(open(eval_file_path))
data = GQAEvalData(gqa, vis_processor, img_path) data = GQAEvalData(gqa, vis_processor, img_path)
eval_dataloader = DataLoader(data, batch_size=batch_size, shuffle=False) eval_dataloader = DataLoader(data, batch_size=batch_size, shuffle=False)
@ -151,6 +176,12 @@ if 'gqa' in args.dataset:
json.dump(minigpt4_predict, f) json.dump(minigpt4_predict, f)
if 'vsr' in args.dataset: if 'vsr' in args.dataset:
img_path = cfg.evaluation_datasets_cfg["vsr"]["img_path"]
batch_size = cfg.evaluation_datasets_cfg["vsr"]["batch_size"]
max_new_tokens = cfg.evaluation_datasets_cfg["vsr"]["max_new_tokens"]
save_path = cfg.evaluation_datasets_cfg["vsr"]["save_path"]
annotation = load_dataset("cambridgeltl/vsr_zeroshot", split='test') annotation = load_dataset("cambridgeltl/vsr_zeroshot", split='test')
data = VSREvalData(annotation, vis_processor, img_path) data = VSREvalData(annotation, vis_processor, img_path)
eval_dataloader = DataLoader(data, batch_size=batch_size, shuffle=False) eval_dataloader = DataLoader(data, batch_size=batch_size, shuffle=False)
@ -176,6 +207,13 @@ if 'vsr' in args.dataset:
json.dump(minigpt4_predict, f) json.dump(minigpt4_predict, f)
if 'hm' in args.dataset: if 'hm' in args.dataset:
eval_file_path = cfg.evaluation_datasets_cfg["hm"]["eval_file_path"]
img_path = cfg.evaluation_datasets_cfg["hm"]["img_path"]
batch_size = cfg.evaluation_datasets_cfg["hm"]["batch_size"]
max_new_tokens = cfg.evaluation_datasets_cfg["hm"]["max_new_tokens"]
save_path = cfg.evaluation_datasets_cfg["hm"]["save_path"]
annotation = [] annotation = []
with open(eval_file_path, 'r') as jsonl_file: with open(eval_file_path, 'r') as jsonl_file:
for line in jsonl_file: for line in jsonl_file:

View File

@ -29,6 +29,7 @@ class Config:
runner_config = self.build_runner_config(config) runner_config = self.build_runner_config(config)
model_config = self.build_model_config(config, **user_config) model_config = self.build_model_config(config, **user_config)
dataset_config = self.build_dataset_config(config) dataset_config = self.build_dataset_config(config)
evaluation_dataset_config = self.build_evaluation_dataset_config(config)
# Validate the user-provided runner configuration # Validate the user-provided runner configuration
# model and dataset configuration are supposed to be validated by the respective classes # model and dataset configuration are supposed to be validated by the respective classes
@ -37,7 +38,7 @@ class Config:
# Override the default configuration with user options. # Override the default configuration with user options.
self.config = OmegaConf.merge( self.config = OmegaConf.merge(
runner_config, model_config, dataset_config, user_config runner_config, model_config, dataset_config,evaluation_dataset_config, user_config
) )
def _validate_runner_config(self, runner_config): def _validate_runner_config(self, runner_config):
@ -111,6 +112,28 @@ class Config:
return dataset_config return dataset_config
@staticmethod
def build_evaluation_dataset_config(config):
datasets = config.get("evaluation_datasets", None)
if datasets is None:
raise KeyError(
"Expecting 'datasets' as the root key for dataset configuration."
)
dataset_config = OmegaConf.create()
for dataset_name in datasets:
builder_cls = registry.get_builder_class(dataset_name)
# hierarchy override, customized config > default config
dataset_config = OmegaConf.merge(
dataset_config,
{"evaluation_datasets": {dataset_name: config["evaluation_datasets"][dataset_name]}},
)
return dataset_config
def _convert_to_dot_list(self, opts): def _convert_to_dot_list(self, opts):
if opts is None: if opts is None:
opts = [] opts = []
@ -136,6 +159,10 @@ class Config:
def datasets_cfg(self): def datasets_cfg(self):
return self.config.datasets return self.config.datasets
@property
def evaluation_datasets_cfg(self):
return self.config.evaluation_datasets
@property @property
def model_cfg(self): def model_cfg(self):
return self.config.model return self.config.model

View File

@ -184,7 +184,7 @@ class BaseModel(nn.Module):
else: else:
llama_model = LlamaForCausalLM.from_pretrained( llama_model = LlamaForCausalLM.from_pretrained(
llama_model_path, llama_model_path,
torch_dtype=torch.float32, torch_dtype=torch.float16,
) )
if lora_r > 0: if lora_r > 0: