prepare dataset readme

This commit is contained in:
junchen14 2023-10-23 09:43:07 +03:00
parent db44bb36e1
commit 98558dd4fe
3 changed files with 524 additions and 211 deletions

180
.gitignore vendored Executable file
View File

@ -0,0 +1,180 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
.idea/
wandb/
jobs/logs/
*.out
*ipynb
.history/
*.json
*.sh
.ipynb_common
logs/
results/
prompts/
output/
ckpt/
divide_vqa.py
slurm*
sbatch_generate*

View File

@ -0,0 +1,133 @@
## Download the COCO captions, RefCOCO, RefCOCO+. RefCOCOg, visual genome, textcaps, LLaVA, gqa, AOK-VQA, OK-VQA, OCR-VQA, filtered Flickr-30k, multi-task conversation, and Unnatural instruction datasets
### COCO captions
### RefCOCO, RefCOCO+, RefCOCOg
### Visual genome
### textcaps
### LLaVA
### gqa
### OKVQA
### AOK-VQA
### OCR-VQA
### filtered Flickr-30k
### Multi-task conversation
### Unnatural instruction
### Pre-training datasets download:
We use the filtered synthetic captions prepared by BLIP. For more details about the dataset, please refer to [BLIP](https://github.com/salesforce/BLIP).
It requires ~2.3T to store LAION and CC3M+CC12M+SBU datasets
Image source | Filtered synthetic caption by ViT-L
--- | :---:
CC3M+CC12M+SBU | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/datasets/ccs_synthetic_filtered_large.json">Download</a>
LAION115M | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/datasets/laion_synthetic_filtered_large.json">Download</a>
This will download two json files
```
ccs_synthetic_filtered_large.json
laion_synthetic_filtered_large.json
```
## prepare the data step-by-step
### setup the dataset folder and move the annotation file to the data storage folder
```
export MINIGPT4_DATASET=/YOUR/PATH/FOR/LARGE/DATASET/
mkdir ${MINIGPT4_DATASET}/cc_sbu
mkdir ${MINIGPT4_DATASET}/laion
mv ccs_synthetic_filtered_large.json ${MINIGPT4_DATASET}/cc_sbu
mv laion_synthetic_filtered_large.json ${MINIGPT4_DATASET}/laion
```
### Convert the scripts to data storate folder
```
cp convert_cc_sbu.py ${MINIGPT4_DATASET}/cc_sbu
cp download_cc_sbu.sh ${MINIGPT4_DATASET}/cc_sbu
cp convert_laion.py ${MINIGPT4_DATASET}/laion
cp download_laion.sh ${MINIGPT4_DATASET}/laion
```
### Convert the laion and cc_sbu annotation file format to be img2dataset format
```
cd ${MINIGPT4_DATASET}/cc_sbu
python convert_cc_sbu.py
cd ${MINIGPT4_DATASET}/laion
python convert_laion.py
```
### Download the datasets with img2dataset
```
cd ${MINIGPT4_DATASET}/cc_sbu
sh download_cc_sbu.sh
cd ${MINIGPT4_DATASET}/laion
sh download_laion.sh
```
The final dataset structure
```
.
├── ${MINIGPT4_DATASET}
│ ├── cc_sbu
│ ├── convert_cc_sbu.py
│ ├── download_cc_sbu.sh
│ ├── ccs_synthetic_filtered_large.json
│ ├── ccs_synthetic_filtered_large.tsv
│ └── cc_sbu_dataset
│ ├── 00000.tar
│ ├── 00000.parquet
│ ...
│ ├── laion
│ ├── convert_laion.py
│ ├── download_laion.sh
│ ├── laion_synthetic_filtered_large.json
│ ├── laion_synthetic_filtered_large.tsv
│ └── laion_dataset
│ ├── 00000.tar
│ ├── 00000.parquet
│ ...
...
```
## Set up the dataset configuration files
Then, set up the LAION dataset loading path in
[here](../minigpt4/configs/datasets/laion/defaults.yaml#L5) at Line 5 as
${MINIGPT4_DATASET}/laion/laion_dataset/{00000..10488}.tar
and the Conceptual Captoin and SBU datasets loading path in
[here](../minigpt4/configs/datasets/cc_sbu/defaults.yaml#L5) at Line 5 as
${MINIGPT4_DATASET}/cc_sbu/cc_sbu_dataset/{00000..01255}.tar

View File

@ -29,244 +29,244 @@ datasets:
name: "blip_caption" name: "blip_caption"
sample_ratio: 40 sample_ratio: 40
# llava_conversation: # 77k llava_conversation: # 77k
# batch_size: 2 batch_size: 2
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 10 sample_ratio: 10
# unnatural_instruction: unnatural_instruction:
# batch_size: 1 batch_size: 1
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 15 sample_ratio: 15
# refvg: refvg:
# batch_size: 6 batch_size: 6
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 40 sample_ratio: 40
# llava_detail: #23K llava_detail: #23K
# batch_size: 4 batch_size: 4
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 20 sample_ratio: 20
# llava_reason: # 77k llava_reason: # 77k
# batch_size: 4 batch_size: 4
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 80 sample_ratio: 80
# flickr_grounded_caption: flickr_grounded_caption:
# batch_size: 2 batch_size: 2
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 80 sample_ratio: 80
# flickr_CaptionToPhrase: flickr_CaptionToPhrase:
# batch_size: 2 batch_size: 2
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 80 sample_ratio: 80
# flickr_ObjectToPhrase: flickr_ObjectToPhrase:
# batch_size: 2 batch_size: 2
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 80 sample_ratio: 80
# coco_caption: coco_caption:
# batch_size: 6 batch_size: 6
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 10 sample_ratio: 10
# textcaps_caption: # textcaps_caption: #
# batch_size: 6 batch_size: 6
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 10 sample_ratio: 10
# refcoco: # 142k refcoco: # 142k
# batch_size: 6 batch_size: 6
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 15 sample_ratio: 15
# refcocop: refcocop:
# batch_size: 6 batch_size: 6
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 15 sample_ratio: 15
# refcocog: refcocog:
# batch_size: 6 batch_size: 6
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 15 sample_ratio: 15
# invrefcoco: invrefcoco:
# batch_size: 6 batch_size: 6
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 10 sample_ratio: 10
# invrefcocop: invrefcocop:
# batch_size: 6 batch_size: 6
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 10 sample_ratio: 10
# invrefcocog: invrefcocog:
# batch_size: 6 batch_size: 6
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 10 sample_ratio: 10
# coco_vqa: # 82K coco_vqa: # 82K
# batch_size: 6 batch_size: 6
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 15 sample_ratio: 15
# ok_vqa: # 9k ok_vqa: # 9k
# batch_size: 6 batch_size: 6
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 8 sample_ratio: 8
# aok_vqa: # 17k aok_vqa: # 17k
# batch_size: 6 batch_size: 6
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 12 sample_ratio: 12
# gqa: # 82K gqa: # 82K
# batch_size: 6 batch_size: 6
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 40 sample_ratio: 40
# ocrvqa: # 800K ocrvqa: # 800K
# batch_size: 6 batch_size: 6
# vis_processor: vis_processor:
# train: train:
# name: "blip2_image_train" name: "blip2_image_train"
# image_size: 448 image_size: 448
# text_processor: text_processor:
# train: train:
# name: "blip_caption" name: "blip_caption"
# sample_ratio: 30 sample_ratio: 30
run: run:
@ -285,7 +285,7 @@ run:
iters_per_epoch: 1000 iters_per_epoch: 1000
seed: 42 seed: 42
output_dir: "/ibex/project/c2090/minigpt4_ckpt/448_conversation_correct_best_v7_ablation1_v5_v6_again_system_prompt" output_dir: "/ibex/project/c2090/minigpt4_ckpt/448_finetune_test_online"
amp: True amp: True
resume_ckpt_path: null resume_ckpt_path: null