mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-05 02:20:47 +00:00
Merge e2c0d3f82a
into c6acff2d8d
This commit is contained in:
commit
9eec0b20c3
3
.gitignore
vendored
Normal file
3
.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
.DS_Store
|
||||
__pycache__/
|
||||
model/
|
66
README.md
66
README.md
@ -5,17 +5,14 @@
|
||||
|
||||
<a href='https://minigpt-4.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://arxiv.org/abs/2304.10592'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> <a href='https://huggingface.co/spaces/Vision-CAIR/minigpt4'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a> <a href='https://huggingface.co/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a> [](https://colab.research.google.com/drive/1OK4kYsZphwt5DXchKkzMBjYF6jnkqh4R?usp=sharing) [](https://www.youtube.com/watch?v=__tftoxpBAw&feature=youtu.be)
|
||||
|
||||
|
||||
## News
|
||||
We now provide a pretrained MiniGPT-4 aligned with Vicuna-7B! The demo GPU memory consumption now can be as low as 12GB.
|
||||
|
||||
|
||||
## Online Demo
|
||||
|
||||
Click the image to chat with MiniGPT-4 around your images
|
||||
[](https://minigpt-4.github.io)
|
||||
|
||||
|
||||
## Examples
|
||||
| | |
|
||||
:-------------------------:|:-------------------------:
|
||||
@ -24,19 +21,15 @@ Click the image to chat with MiniGPT-4 around your images
|
||||
|
||||
More examples can be found in the [project page](https://minigpt-4.github.io).
|
||||
|
||||
|
||||
|
||||
## Introduction
|
||||
- MiniGPT-4 aligns a frozen visual encoder from BLIP-2 with a frozen LLM, Vicuna, using just one projection layer.
|
||||
- MiniGPT-4 aligns a frozen visual encoder from BLIP-2 with a frozen LLM, Vicuna, using just one projection layer.
|
||||
- We train MiniGPT-4 with two stages. The first traditional pretraining stage is trained using roughly 5 million aligned image-text pairs in 10 hours using 4 A100s. After the first stage, Vicuna is able to understand the image. But the generation ability of Vicuna is heavilly impacted.
|
||||
- To address this issue and improve usability, we propose a novel way to create high-quality image-text pairs by the model itself and ChatGPT together. Based on this, we then create a small (3500 pairs in total) yet high-quality dataset.
|
||||
- The second finetuning stage is trained on this dataset in a conversation template to significantly improve its generation reliability and overall usability. To our surprise, this stage is computationally efficient and takes only around 7 minutes with a single A100.
|
||||
- MiniGPT-4 yields many emerging vision-language capabilities similar to those demonstrated in GPT-4.
|
||||
|
||||
- MiniGPT-4 yields many emerging vision-language capabilities similar to those demonstrated in GPT-4.
|
||||
|
||||

|
||||
|
||||
|
||||
## Getting Started
|
||||
### Installation
|
||||
|
||||
@ -51,11 +44,10 @@ conda env create -f environment.yml
|
||||
conda activate minigpt4
|
||||
```
|
||||
|
||||
|
||||
**2. Prepare the pretrained Vicuna weights**
|
||||
|
||||
The current version of MiniGPT-4 is built on the v0 versoin of Vicuna-13B.
|
||||
Please refer to our instruction [here](PrepareVicuna.md)
|
||||
Please refer to our instruction [here](PrepareVicuna.md)
|
||||
to prepare the Vicuna weights.
|
||||
The final weights would be in a single folder in a structure similar to the following:
|
||||
|
||||
@ -65,10 +57,10 @@ vicuna_weights
|
||||
├── generation_config.json
|
||||
├── pytorch_model.bin.index.json
|
||||
├── pytorch_model-00001-of-00003.bin
|
||||
...
|
||||
...
|
||||
```
|
||||
|
||||
Then, set the path to the vicuna weight in the model config file
|
||||
Then, set the path to the vicuna weight in the model config file
|
||||
[here](minigpt4/configs/models/minigpt4.yaml#L16) at Line 16.
|
||||
|
||||
**3. Prepare the pretrained MiniGPT-4 checkpoint**
|
||||
@ -77,13 +69,10 @@ Download the pretrained checkpoints according to the Vicuna model you prepare.
|
||||
|
||||
| Checkpoint Aligned with Vicuna 13B | Checkpoint Aligned with Vicuna 7B |
|
||||
:------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:
|
||||
[Downlad](https://drive.google.com/file/d/1a4zLvaiDBr-36pasffmgpvH5P7CKmpze/view?usp=share_link) | [Download](https://drive.google.com/file/d/1RY9jV0dyqLX-o38LrumkKRh6Jtaop58R/view?usp=sharing)
|
||||
|
||||
|
||||
Then, set the path to the pretrained checkpoint in the evaluation config file
|
||||
in [eval_configs/minigpt4_eval.yaml](eval_configs/minigpt4_eval.yaml#L10) at Line 11.
|
||||
|
||||
[Downlad](https://drive.google.com/file/d/1a4zLvaiDBr-36pasffmgpvH5P7CKmpze/view?usp=share_link) | [Download](https://drive.google.com/file/d/1RY9jV0dyqLX-o38LrumkKRh6Jtaop58R/view?usp=sharing)
|
||||
|
||||
Then, set the path to the pretrained checkpoint in the evaluation config file
|
||||
in [eval_configs/minigpt4_eval.yaml](eval_configs/minigpt4_eval.yaml#L10) at Line 11.
|
||||
|
||||
### Launching Demo Locally
|
||||
|
||||
@ -93,58 +82,59 @@ Try out our demo [demo.py](demo.py) on your local machine by running
|
||||
python demo.py --cfg-path eval_configs/minigpt4_eval.yaml --gpu-id 0
|
||||
```
|
||||
|
||||
To save GPU memory, Vicuna loads as 8 bit by default, with a beam search width of 1.
|
||||
This configuration requires about 23G GPU memory for Vicuna 13B and 11.5G GPU memory for Vicuna 7B.
|
||||
To save GPU memory, Vicuna loads as 8 bit by default, with a beam search width of 1.
|
||||
This configuration requires about 23G GPU memory for Vicuna 13B and 11.5G GPU memory for Vicuna 7B.
|
||||
For more powerful GPUs, you can run the model
|
||||
in 16 bit by setting low_resource to False in the config file
|
||||
in 16 bit by setting low_resource to False in the config file
|
||||
[minigpt4_eval.yaml](eval_configs/minigpt4_eval.yaml) and use a larger beam search width.
|
||||
|
||||
Thanks [@WangRongsheng](https://github.com/WangRongsheng), you can also run our code on [Colab](https://colab.research.google.com/drive/1OK4kYsZphwt5DXchKkzMBjYF6jnkqh4R?usp=sharing)
|
||||
|
||||
|
||||
### Training
|
||||
The training of MiniGPT-4 contains two alignment stages.
|
||||
|
||||
**1. First pretraining stage**
|
||||
|
||||
In the first pretrained stage, the model is trained using image-text pairs from Laion and CC datasets
|
||||
to align the vision and language model. To download and prepare the datasets, please check
|
||||
our [first stage dataset preparation instruction](dataset/README_1_STAGE.md).
|
||||
to align the vision and language model. To download and prepare the datasets, please check
|
||||
our [first stage dataset preparation instruction](dataset/README_1_STAGE.md).
|
||||
After the first stage, the visual features are mapped and can be understood by the language
|
||||
model.
|
||||
To launch the first stage training, run the following command. In our experiments, we use 4 A100.
|
||||
You can change the save path in the config file
|
||||
To launch the first stage training, run the following command. In our experiments, we use 4 A100.
|
||||
You can change the save path in the config file
|
||||
[train_configs/minigpt4_stage1_pretrain.yaml](train_configs/minigpt4_stage1_pretrain.yaml)
|
||||
|
||||
```bash
|
||||
torchrun --nproc-per-node NUM_GPU train.py --cfg-path train_configs/minigpt4_stage1_pretrain.yaml
|
||||
```
|
||||
|
||||
A MiniGPT-4 checkpoint with only stage one training can be downloaded
|
||||
A MiniGPT-4 checkpoint with only stage one training can be downloaded
|
||||
[here (13B)](https://drive.google.com/file/d/1u9FRRBB3VovP1HxCAlpD9Lw4t4P6-Yq8/view?usp=share_link) or [here (7B)](https://drive.google.com/file/d/1HihQtCEXUyBM1i9DQbaK934wW3TZi-h5/view?usp=share_link).
|
||||
Compared to the model after stage two, this checkpoint generate incomplete and repeated sentences frequently.
|
||||
|
||||
|
||||
**2. Second finetuning stage**
|
||||
|
||||
In the second stage, we use a small high quality image-text pair dataset created by ourselves
|
||||
and convert it to a conversation format to further align MiniGPT-4.
|
||||
To download and prepare our second stage dataset, please check our
|
||||
To download and prepare our second stage dataset, please check our
|
||||
[second stage dataset preparation instruction](dataset/README_2_STAGE.md).
|
||||
To launch the second stage alignment,
|
||||
first specify the path to the checkpoint file trained in stage 1 in
|
||||
To launch the second stage alignment,
|
||||
first specify the path to the checkpoint file trained in stage 1 in
|
||||
[train_configs/minigpt4_stage1_pretrain.yaml](train_configs/minigpt4_stage2_finetune.yaml).
|
||||
You can also specify the output path there.
|
||||
You can also specify the output path there.
|
||||
Then, run the following command. In our experiments, we use 1 A100.
|
||||
|
||||
```bash
|
||||
torchrun --nproc-per-node NUM_GPU train.py --cfg-path train_configs/minigpt4_stage2_finetune.yaml
|
||||
```
|
||||
|
||||
After the second stage alignment, MiniGPT-4 is able to talk about the image coherently and user-friendly.
|
||||
|
||||
After the second stage alignment, MiniGPT-4 is able to talk about the image coherently and user-friendly.
|
||||
|
||||
## Run on Mac
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## Acknowledgement
|
||||
|
||||
@ -152,19 +142,17 @@ After the second stage alignment, MiniGPT-4 is able to talk about the image cohe
|
||||
+ [Lavis](https://github.com/salesforce/LAVIS) This repository is built upon Lavis!
|
||||
+ [Vicuna](https://github.com/lm-sys/FastChat) The fantastic language ability of Vicuna with only 13B parameters is just amazing. And it is open-source!
|
||||
|
||||
|
||||
If you're using MiniGPT-4 in your research or applications, please cite using this BibTeX:
|
||||
```bibtex
|
||||
@misc{zhu2022minigpt4,
|
||||
title={MiniGPT-4: Enhancing Vision-language Understanding with Advanced Large Language Models},
|
||||
title={MiniGPT-4: Enhancing Vision-language Understanding with Advanced Large Language Models},
|
||||
author={Deyao Zhu and Jun Chen and Xiaoqian Shen and Xiang Li and Mohamed Elhoseiny},
|
||||
journal={arXiv preprint arXiv:2304.10592},
|
||||
year={2023},
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## License
|
||||
This repository is under [BSD 3-Clause License](LICENSE.md).
|
||||
Many codes are based on [Lavis](https://github.com/salesforce/LAVIS) with
|
||||
Many codes are based on [Lavis](https://github.com/salesforce/LAVIS) with
|
||||
BSD 3-Clause License [here](LICENSE_Lavis.md).
|
||||
|
15
demo.py
Normal file → Executable file
15
demo.py
Normal file → Executable file
@ -19,6 +19,7 @@ from minigpt4.processors import *
|
||||
from minigpt4.runners import *
|
||||
from minigpt4.tasks import *
|
||||
|
||||
CUDA = torch.cuda.is_available()
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description="Demo")
|
||||
@ -57,11 +58,13 @@ cfg = Config(args)
|
||||
model_config = cfg.model_cfg
|
||||
model_config.device_8bit = args.gpu_id
|
||||
model_cls = registry.get_model_class(model_config.arch)
|
||||
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
|
||||
GPU = 'cuda:{}'.format(args.gpu_id) if CUDA else None
|
||||
model = model_cls.from_config(model_config).to(GPU)
|
||||
model = torch.compile(model)
|
||||
|
||||
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
|
||||
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
|
||||
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
|
||||
chat = Chat(model, vis_processor, device=GPU)
|
||||
print('Initialization Finished')
|
||||
|
||||
# ========================================
|
||||
@ -118,7 +121,7 @@ with gr.Blocks() as demo:
|
||||
image = gr.Image(type="pil")
|
||||
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
|
||||
clear = gr.Button("Restart")
|
||||
|
||||
|
||||
num_beams = gr.Slider(
|
||||
minimum=1,
|
||||
maximum=10,
|
||||
@ -127,7 +130,7 @@ with gr.Blocks() as demo:
|
||||
interactive=True,
|
||||
label="beam search numbers)",
|
||||
)
|
||||
|
||||
|
||||
temperature = gr.Slider(
|
||||
minimum=0.1,
|
||||
maximum=2.0,
|
||||
@ -142,9 +145,9 @@ with gr.Blocks() as demo:
|
||||
img_list = gr.State()
|
||||
chatbot = gr.Chatbot(label='MiniGPT-4')
|
||||
text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False)
|
||||
|
||||
|
||||
upload_button.click(upload_img, [image, text_input, chat_state], [image, text_input, upload_button, chat_state, img_list])
|
||||
|
||||
|
||||
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
|
||||
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
|
||||
)
|
||||
|
7
demo.sh
Executable file
7
demo.sh
Executable file
@ -0,0 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
DIR=$(realpath $0) && DIR=${DIR%/*}
|
||||
cd $DIR
|
||||
set -ex
|
||||
|
||||
python demo.py --cfg-path $DIR/eval_configs/minigpt4_eval.yaml
|
@ -4,13 +4,13 @@ channels:
|
||||
- defaults
|
||||
- anaconda
|
||||
dependencies:
|
||||
- python=3.9
|
||||
- python=3.10
|
||||
- cudatoolkit
|
||||
- pip
|
||||
- pytorch=1.12.1
|
||||
- pytorch=2.0.0
|
||||
- pytorch-mutex=1.0=cuda
|
||||
- torchaudio=0.12.1
|
||||
- torchvision=0.13.1
|
||||
- torchvision=0.15.1
|
||||
- pip:
|
||||
- accelerate==0.16.0
|
||||
- aiohttp==3.8.4
|
||||
|
@ -8,7 +8,7 @@ model:
|
||||
low_resource: True
|
||||
prompt_path: "prompts/alignment.txt"
|
||||
prompt_template: '###Human: {} ###Assistant: '
|
||||
ckpt: '/path/to/pretrained/ckpt/'
|
||||
ckpt: ./model/pretrained_minigpt4.pth # /path/to/pretrained/ckpt/
|
||||
|
||||
|
||||
datasets:
|
||||
|
@ -13,7 +13,7 @@ model:
|
||||
num_query_token: 32
|
||||
|
||||
# Vicuna
|
||||
llama_model: "/path/to/vicuna/weights/"
|
||||
llama_model: './model/vicuna-13b' # /path/to/vicuna/weights/
|
||||
|
||||
# generation configs
|
||||
prompt: ""
|
||||
|
@ -10,6 +10,7 @@ from minigpt4.models.blip2 import Blip2Base, disabled_train
|
||||
from minigpt4.models.modeling_llama import LlamaForCausalLM
|
||||
from transformers import LlamaTokenizer
|
||||
|
||||
CUDA = torch.cuda.is_available()
|
||||
|
||||
@registry.register_model("mini_gpt4")
|
||||
class MiniGPT4(Blip2Base):
|
||||
@ -86,17 +87,19 @@ class MiniGPT4(Blip2Base):
|
||||
self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False)
|
||||
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
|
||||
|
||||
torch_dtype = torch.float16 if CUDA else torch.float32
|
||||
if self.low_resource:
|
||||
self.llama_model = LlamaForCausalLM.from_pretrained(
|
||||
llama_model,
|
||||
torch_dtype=torch.float16,
|
||||
load_in_8bit=True,
|
||||
device_map={'': device_8bit}
|
||||
torch_dtype=torch_dtype,
|
||||
load_in_8bit=CUDA,
|
||||
offload_folder="model/offload",
|
||||
device_map={'': device_8bit} if CUDA else 'auto'
|
||||
)
|
||||
else:
|
||||
self.llama_model = LlamaForCausalLM.from_pretrained(
|
||||
llama_model,
|
||||
torch_dtype=torch.float16,
|
||||
torch_dtype=torch_dtype,
|
||||
)
|
||||
|
||||
for name, param in self.llama_model.named_parameters():
|
||||
|
85
requirements.txt
Normal file
85
requirements.txt
Normal file
@ -0,0 +1,85 @@
|
||||
accelerate==0.18.0
|
||||
aiofiles==23.1.0
|
||||
aiohttp==3.8.4
|
||||
aiosignal==1.3.1
|
||||
altair==4.2.2
|
||||
antlr4-python3-runtime==4.9.3
|
||||
anyio==3.6.2
|
||||
async-timeout==4.0.2
|
||||
attrs==23.1.0
|
||||
bitsandbytes==0.38.1
|
||||
braceexpand==0.1.7
|
||||
certifi==2022.12.7
|
||||
charset-normalizer==3.1.0
|
||||
click==8.1.3
|
||||
contourpy==1.0.7
|
||||
cycler==0.11.0
|
||||
entrypoints==0.4
|
||||
eva-decord==0.6.1
|
||||
fastapi==0.95.1
|
||||
ffmpy==0.3.0
|
||||
filelock==3.12.0
|
||||
fonttools==4.39.3
|
||||
frozenlist==1.3.3
|
||||
fsspec==2023.4.0
|
||||
gradio==3.28.1
|
||||
gradio_client==0.1.4
|
||||
h11==0.14.0
|
||||
httpcore==0.17.0
|
||||
httpx==0.24.0
|
||||
huggingface-hub==0.14.1
|
||||
idna==3.4
|
||||
iopath==0.1.10
|
||||
Jinja2==3.1.2
|
||||
jsonschema==4.17.3
|
||||
kiwisolver==1.4.4
|
||||
linkify-it-py==2.0.0
|
||||
markdown-it-py==2.2.0
|
||||
MarkupSafe==2.1.2
|
||||
matplotlib==3.7.1
|
||||
mdit-py-plugins==0.3.3
|
||||
mdurl==0.1.2
|
||||
mpmath==1.3.0
|
||||
multidict==6.0.4
|
||||
networkx==3.1
|
||||
numpy==1.24.3
|
||||
omegaconf==2.3.0
|
||||
opencv-python==4.7.0.72
|
||||
orjson==3.8.11
|
||||
packaging==23.1
|
||||
pandas==2.0.1
|
||||
Pillow==9.5.0
|
||||
portalocker==2.7.0
|
||||
psutil==5.9.5
|
||||
pydantic==1.10.7
|
||||
pydub==0.25.1
|
||||
pyparsing==3.0.9
|
||||
pyrsistent==0.19.3
|
||||
python-dateutil==2.8.2
|
||||
python-multipart==0.0.6
|
||||
pytz==2023.3
|
||||
PyYAML==6.0
|
||||
regex==2023.3.23
|
||||
requests==2.29.0
|
||||
semantic-version==2.10.0
|
||||
sentencepiece==0.1.98
|
||||
six==1.16.0
|
||||
sniffio==1.3.0
|
||||
socksio==1.0.0
|
||||
starlette==0.26.1
|
||||
sympy==1.11.1
|
||||
timm==0.6.13
|
||||
tokenizers==0.13.3
|
||||
toolz==0.12.0
|
||||
torch==2.0.0
|
||||
torchvision==0.15.1
|
||||
tqdm==4.65.0
|
||||
transformers==4.28.1
|
||||
typing_extensions==4.5.0
|
||||
tzdata==2023.3
|
||||
uc-micro-py==1.0.1
|
||||
urllib3==1.26.15
|
||||
uvicorn==0.22.0
|
||||
webdataset==0.2.48
|
||||
websockets==11.0.2
|
||||
yarl==1.9.2
|
Loading…
Reference in New Issue
Block a user