This commit is contained in:
Deyao Zhu 2023-10-23 21:47:36 +03:00
commit cfe67a2c40
2 changed files with 2 additions and 27 deletions

1
dataset/Evaluation.md Normal file
View File

@ -0,0 +1 @@

View File

@ -1,33 +1,17 @@
## Download the COCO captions, RefCOCO, RefCOCO+. RefCOCOg, visual genome, textcaps, LLaVA, gqa, AOK-VQA, OK-VQA, OCR-VQA, filtered Flickr-30k, multi-task conversation, and Unnatural instruction datasets
After downloading all of them, organize the data as follows in `./playground/data`,
```
├── coco
│ └── train2017
├── gqa
│ └── images
├── ocr_vqa
│ └── images
├── textvqa
│ └── train_images
└── vg
├── VG_100K
└── VG_100K_2
```
### COCO captions
- [train2017](http://images.cocodataset.org/zips/train2017.zip)
### Visual genome
- [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
### TextCaps
### RefCOCO, RefCOCO+, RefCOCOg
Makesure you have the COCO 2014 images first.
Make sure you have the COCO 2014 images first.
Then,
download RefCOCO, RefCOCO+, and RefCOCOg annotation files in the following links.
@ -88,16 +72,6 @@ detail_23k.json, and complex_reasoning_77k.json in conversation.yaml, detail.yam
- [minigpt4/configs/datasets/llava/reason.yaml](../minigpt4/configs/datasets/llava/reason.yaml)
### TextVQA
- [train_val_images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
### GQA
- [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip)
- [Annotations](https://storage.googleapis.com/sfr-vision-language-research/LAVIS/datasets/gqa/testdev_balanced_questions.json)
### GQA
### OKVQA
### AOK-VQA