mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-05 18:40:46 +00:00
Initial Version (might have some bugs)
This commit is contained in:
parent
ec6d62eb32
commit
d2db151df2
@ -0,0 +1 @@
|
||||
# TODO: Finish the eval config of ImageBindGPT4
|
@ -38,12 +38,12 @@ from imagebind.models.multimodal_projectors import create_projectors, create_pre
|
||||
from imagebind.models.transformer import MultiheadAttention, SimpleTransformer
|
||||
|
||||
ModalityType = SimpleNamespace(
|
||||
VISION="Vision",
|
||||
TEXT="Text",
|
||||
AUDIO="Audio",
|
||||
THERMAL="Thermal",
|
||||
DEPTH="Depth",
|
||||
IMU="Imu",
|
||||
VISION="vision",
|
||||
TEXT="text",
|
||||
AUDIO="audio",
|
||||
THERMAL="thermal",
|
||||
DEPTH="depth",
|
||||
IMU="imu",
|
||||
)
|
||||
|
||||
|
||||
|
@ -0,0 +1,29 @@
|
||||
model:
|
||||
arch: bind_gpt4
|
||||
|
||||
# Imagebind
|
||||
freeze_imagebind: True
|
||||
|
||||
# Q-Former
|
||||
freeze_qformer: True
|
||||
num_query_token: 32
|
||||
|
||||
# Vicuna
|
||||
llama_model: "/path/to/vicuna/weights/"
|
||||
|
||||
# generation configs
|
||||
prompt: ""
|
||||
|
||||
preprocess:
|
||||
vis_processor:
|
||||
train:
|
||||
name: "imagebind_vision_train"
|
||||
image_size: 224
|
||||
eval:
|
||||
name: "imagebind_vision_eval"
|
||||
image_size: 224
|
||||
text_processor:
|
||||
train:
|
||||
name: "imagebind_caption"
|
||||
eval:
|
||||
name: "imagebind_caption"
|
@ -14,6 +14,7 @@ from minigpt4.models.base_model import BaseModel
|
||||
from minigpt4.models.blip2 import Blip2Base
|
||||
from minigpt4.models.mini_gpt4 import MiniGPT4
|
||||
from minigpt4.processors.base_processor import BaseProcessor
|
||||
from minigpt4.models.bind_gpt4 import BindGPT4
|
||||
|
||||
|
||||
__all__ = [
|
||||
@ -21,6 +22,7 @@ __all__ = [
|
||||
"BaseModel",
|
||||
"Blip2Base",
|
||||
"MiniGPT4",
|
||||
"BindGPT4"
|
||||
]
|
||||
|
||||
|
||||
|
@ -90,7 +90,7 @@ class BindGPT4(BaseModel):
|
||||
attns_input = torch.ones(input_embeds.size()[:-1], dtype=torch.long).to(input_embeds.device)
|
||||
if prompt:
|
||||
batch_size = input_embeds.shape[0]
|
||||
p_before, p_after = prompt.split('<{}Here>'.format(modality_name))
|
||||
p_before, p_after = prompt.split('<{}Here>'.format(modality_name.title()))
|
||||
p_before_tokens = self.llama_tokenizer(
|
||||
p_before, return_tensors="pt", add_special_tokens=False).to(input_embeds.device)
|
||||
p_after_tokens = self.llama_tokenizer(
|
||||
@ -110,7 +110,7 @@ class BindGPT4(BaseModel):
|
||||
Other modalities will conflict with the pre-defined prompt and wrapping strategy.
|
||||
"""
|
||||
embeds = self.encode_inputs(inputs)
|
||||
assert "Vision" in embeds
|
||||
assert "vision" in embeds, "Only Vision Input Can Be Accepted Now."
|
||||
prompt = random.choice(self.prompt_list)
|
||||
img_embeds, atts_img = self.prompt_wrap(embeds, ModalityType.VISION, prompt)
|
||||
|
||||
|
@ -6,19 +6,27 @@
|
||||
"""
|
||||
|
||||
from minigpt4.processors.base_processor import BaseProcessor
|
||||
from minigpt4.processors.blip_processors import (
|
||||
Blip2ImageTrainProcessor,
|
||||
Blip2ImageEvalProcessor,
|
||||
BlipCaptionProcessor,
|
||||
# from minigpt4.processors.blip_processors import (
|
||||
# Blip2ImageTrainProcessor,
|
||||
# Blip2ImageEvalProcessor,
|
||||
# BlipCaptionProcessor,
|
||||
# )
|
||||
from minigpt4.processors.imagebind_processor import (
|
||||
ImageBindCaptionProcessor,
|
||||
ImageBindVisionTrainProcessor,
|
||||
ImageBindVisionEvalProcessor
|
||||
)
|
||||
|
||||
from minigpt4.common.registry import registry
|
||||
|
||||
__all__ = [
|
||||
"BaseProcessor",
|
||||
"Blip2ImageTrainProcessor",
|
||||
"Blip2ImageEvalProcessor",
|
||||
"BlipCaptionProcessor",
|
||||
# "Blip2ImageTrainProcessor",
|
||||
# "Blip2ImageEvalProcessor",
|
||||
# "BlipCaptionProcessor",
|
||||
"ImageBindCaptionProcessor",
|
||||
"ImageBindVisionTrainProcessor",
|
||||
"ImageBindVisionEvalProcessor"
|
||||
]
|
||||
|
||||
|
||||
|
148
minigpt4/processors/imagebind_processor.py
Normal file
148
minigpt4/processors/imagebind_processor.py
Normal file
@ -0,0 +1,148 @@
|
||||
"""
|
||||
Copyright (c) 2022, salesforce.com, inc.
|
||||
All rights reserved.
|
||||
SPDX-License-Identifier: BSD-3-Clause
|
||||
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
"""
|
||||
|
||||
import re
|
||||
|
||||
from minigpt4.common.registry import registry
|
||||
from minigpt4.processors.base_processor import BaseProcessor
|
||||
from minigpt4.processors.randaugment import RandomAugment
|
||||
from omegaconf import OmegaConf
|
||||
from torchvision import transforms
|
||||
from torchvision.transforms.functional import InterpolationMode
|
||||
|
||||
|
||||
class ImageBindVisionBaseProcessor(BaseProcessor):
|
||||
def __init__(self, mean=None, std=None):
|
||||
super().__init__()
|
||||
if mean is None:
|
||||
mean = (0.48145466, 0.4578275, 0.40821073)
|
||||
if std is None:
|
||||
std = (0.26862954, 0.26130258, 0.27577711)
|
||||
|
||||
self.normalize = transforms.Normalize(mean, std)
|
||||
|
||||
|
||||
# Note: The config of caption processor keeps the same as BLIP2 / MiniGPT4
|
||||
@registry.register_processor("imagebind_caption")
|
||||
class ImageBindCaptionProcessor(BaseProcessor):
|
||||
def __init__(self, prompt="", max_words=50):
|
||||
# Note: Actually no prompts are used here.
|
||||
super().__init__()
|
||||
self.prompt = prompt
|
||||
self.max_words = max_words
|
||||
|
||||
def __call__(self, caption):
|
||||
caption = self.prompt + self.pre_caption(caption)
|
||||
|
||||
return caption
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, cfg=None):
|
||||
if cfg is None:
|
||||
cfg = OmegaConf.create()
|
||||
|
||||
prompt = cfg.get("prompt", "")
|
||||
max_words = cfg.get("max_words", 50)
|
||||
|
||||
return cls(prompt=prompt, max_words=max_words)
|
||||
|
||||
def pre_caption(self, caption):
|
||||
caption = re.sub(
|
||||
r"([.!\"()*#:;~])",
|
||||
" ",
|
||||
caption.lower(),
|
||||
)
|
||||
caption = re.sub(
|
||||
r"\s{2,}",
|
||||
" ",
|
||||
caption,
|
||||
)
|
||||
caption = caption.rstrip("\n")
|
||||
caption = caption.strip(" ")
|
||||
|
||||
# truncate caption
|
||||
caption_words = caption.split(" ")
|
||||
if len(caption_words) > self.max_words:
|
||||
caption = " ".join(caption_words[: self.max_words])
|
||||
|
||||
return caption
|
||||
|
||||
|
||||
# Note: The training config of vision processor keeps the same as BLIP2 / MiniGPT4
|
||||
@registry.register_processor("imagebind_vision_train")
|
||||
class ImageBindVisionTrainProcessor(ImageBindVisionBaseProcessor):
|
||||
def __init__(self, image_size=224, mean=None, std=None, min_scale=0.5, max_scale=1.0):
|
||||
super().__init__(mean=mean, std=std)
|
||||
|
||||
self.transform = transforms.Compose(
|
||||
[
|
||||
transforms.RandomResizedCrop(
|
||||
image_size,
|
||||
scale=(min_scale, max_scale),
|
||||
interpolation=InterpolationMode.BICUBIC,
|
||||
),
|
||||
transforms.ToTensor(),
|
||||
self.normalize,
|
||||
]
|
||||
)
|
||||
|
||||
def __call__(self, item):
|
||||
return self.transform(item)
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, cfg=None):
|
||||
if cfg is None:
|
||||
cfg = OmegaConf.create()
|
||||
|
||||
image_size = cfg.get("image_size", 224)
|
||||
|
||||
mean = cfg.get("mean", None)
|
||||
std = cfg.get("std", None)
|
||||
|
||||
min_scale = cfg.get("min_scale", 0.5)
|
||||
max_scale = cfg.get("max_scale", 1.0)
|
||||
|
||||
return cls(
|
||||
image_size=image_size,
|
||||
mean=mean,
|
||||
std=std,
|
||||
min_scale=min_scale,
|
||||
max_scale=max_scale,
|
||||
)
|
||||
|
||||
|
||||
# Changed.
|
||||
@registry.register_processor("imagebind_vision_eval")
|
||||
class ImageBindVisionEvalProcessor(ImageBindVisionBaseProcessor):
|
||||
def __init__(self, image_size=224, mean=None, std=None):
|
||||
super().__init__(mean=mean, std=std)
|
||||
|
||||
self.transform = transforms.Compose(
|
||||
[
|
||||
transforms.Resize(
|
||||
image_size, interpolation=InterpolationMode.BICUBIC
|
||||
),
|
||||
transforms.CenterCrop(image_size),
|
||||
transforms.ToTensor(),
|
||||
self.normalize,
|
||||
]
|
||||
)
|
||||
|
||||
def __call__(self, item):
|
||||
return self.transform(item)
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, cfg=None):
|
||||
if cfg is None:
|
||||
cfg = OmegaConf.create()
|
||||
|
||||
image_size = cfg.get("image_size", 224)
|
||||
|
||||
mean = cfg.get("mean", None)
|
||||
std = cfg.get("std", None)
|
||||
|
||||
return cls(image_size=image_size, mean=mean, std=std)
|
Loading…
Reference in New Issue
Block a user