import logging import random import torch from torch.cuda.amp import autocast as autocast import torch.nn as nn from minigpt4.common.registry import registry from minigpt4.models.base_model import BaseModel, disabled_train from transformers.models.llama.modeling_llama import LlamaForCausalLM from transformers import LlamaTokenizer from peft import ( LoraConfig, get_peft_model, get_peft_model_state_dict, prepare_model_for_int8_training, set_peft_model_state_dict, ) @registry.register_model("mini_gpt4") class MiniGPT4(BaseModel): """ MiniGPT-4 model """ PRETRAINED_MODEL_CONFIG_DICT = { "pretrain_vicuna0": "configs/models/minigpt4_vicuna0.yaml", "pretrain_llama2": "configs/models/minigpt4_llama2.yaml", } def __init__( self, vit_model="eva_clip_g", q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth", img_size=224, drop_path_rate=0, use_grad_checkpoint=False, vit_precision="fp16", freeze_vit=True, has_qformer=True, freeze_qformer=True, num_query_token=32, llama_model="", prompt_path="", prompt_template="", max_txt_len=32, end_sym='\n', low_resource=False, # use 8 bit and put vit in cpu device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore. lora_r=0, lora_target_modules=["q_proj", "v_proj"], lora_alpha=16, lora_dropout=0.05, ): super().__init__() self.tokenizer = self.init_tokenizer() self.low_resource = low_resource print('Loading VIT') self.visual_encoder, self.ln_vision = self.init_vision_encoder( vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision ) if freeze_vit: for name, param in self.visual_encoder.named_parameters(): param.requires_grad = False self.visual_encoder = self.visual_encoder.eval() self.visual_encoder.train = disabled_train for name, param in self.ln_vision.named_parameters(): param.requires_grad = False self.ln_vision = self.ln_vision.eval() self.ln_vision.train = disabled_train logging.info("freeze vision encoder") print('Loading VIT Done') self.has_qformer = has_qformer if self.has_qformer: print('Loading Q-Former') self.Qformer, self.query_tokens = self.init_Qformer( num_query_token, self.visual_encoder.num_features ) self.Qformer.cls = None self.Qformer.bert.embeddings.word_embeddings = None self.Qformer.bert.embeddings.position_embeddings = None for layer in self.Qformer.bert.encoder.layer: layer.output = None layer.intermediate = None self.load_from_pretrained(url_or_filename=q_former_model) if freeze_qformer: for name, param in self.Qformer.named_parameters(): param.requires_grad = False self.Qformer = self.Qformer.eval() self.Qformer.train = disabled_train self.query_tokens.requires_grad = False logging.info("freeze Qformer") img_f_dim = self.Qformer.config.hidden_size print('Loading Q-Former Done') else: img_f_dim = self.visual_encoder.num_features * 4 print('Do not use Q-Former here.') print('Loading LLAMA') self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False) self.llama_tokenizer.pad_token = "$$" if self.low_resource: self.llama_model = LlamaForCausalLM.from_pretrained( llama_model, torch_dtype=torch.float16, load_in_8bit=True, device_map={'': device_8bit} ) else: self.llama_model = LlamaForCausalLM.from_pretrained( llama_model, torch_dtype=torch.float16, ) if lora_r > 0: self.llama_model = prepare_model_for_int8_training(self.llama_model) loraconfig = LoraConfig( r=lora_r, lora_alpha=lora_alpha, target_modules=lora_target_modules, lora_dropout=lora_dropout, bias="none", task_type="CAUSAL_LM" ) self.llama_model = get_peft_model(self.llama_model, loraconfig) # if ckpt_path: # print('load the llm under lora') # ckpt = torch.load(ckpt_path) # set_peft_model_state_dict(self.llama_model,ckpt) self.llama_model.print_trainable_parameters() else: for name, param in self.llama_model.named_parameters(): param.requires_grad = False print('Loading LLAMA Done') self.llama_proj = nn.Linear( img_f_dim, self.llama_model.config.hidden_size ) self.max_txt_len = max_txt_len self.end_sym = end_sym if prompt_path: with open(prompt_path, 'r') as f: raw_prompts = f.read().splitlines() filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "" in raw_prompt] self.prompt_list = [prompt_template.format(p) for p in filted_prompts] print('Load {} training prompts'.format(len(self.prompt_list))) print('Prompt Example \n{}'.format(random.choice(self.prompt_list))) else: self.prompt_list = [] def vit_to_cpu(self): self.ln_vision.to("cpu") self.ln_vision.float() self.visual_encoder.to("cpu") self.visual_encoder.float() def encode_img(self, image): device = image.device if self.low_resource: self.vit_to_cpu() image = image.to("cpu") with self.maybe_autocast(): image_embeds = self.ln_vision(self.visual_encoder(image)).to(device) if self.has_qformer: image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device) query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) query_output = self.Qformer.bert( query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, ) inputs_llama = self.llama_proj(query_output.last_hidden_state) else: image_embeds = image_embeds[:, 1:, :] bs, pn, hs = image_embeds.shape image_embeds = image_embeds.view(bs, int(pn / 4), int(hs * 4)) inputs_llama = self.llama_proj(image_embeds) atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device) return inputs_llama, atts_llama def get_context_emb(self, prompt, img_list): device = img_list[0].device prompt_segs = prompt.split('') assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images." seg_tokens = [ self.llama_tokenizer( seg, return_tensors="pt", add_special_tokens=i == 0).to(device).input_ids # only add bos to the first seg for i, seg in enumerate(prompt_segs) ] seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens] mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]] mixed_embs = torch.cat(mixed_embs, dim=1) return mixed_embs def prompt_wrap(self, img_embeds, atts_img, prompts): if prompts: emb_lists = [] if isinstance(prompts, str): prompts = [prompts] * len(img_embeds) for each_img_embed, each_prompt in zip(img_embeds, prompts): p_before, p_after = each_prompt.split('') p_before_tokens = self.llama_tokenizer( p_before, return_tensors="pt", add_special_tokens=False).to(img_embeds.device) p_after_tokens = self.llama_tokenizer( p_after, return_tensors="pt", add_special_tokens=False).to(img_embeds.device) p_before_embed = self.embed_tokens(p_before_tokens.input_ids) p_after_embed = self.embed_tokens(p_after_tokens.input_ids) wrapped_emb = torch.cat([p_before_embed, each_img_embed[None], p_after_embed], dim=1) emb_lists.append(wrapped_emb) emb_lens = [emb.shape[1] for emb in emb_lists] pad_emb = self.embed_tokens(torch.tensor(self.llama_tokenizer.pad_token_id, device=img_embeds.device)) wrapped_embs = pad_emb.expand(len(emb_lens), max(emb_lens), -1).clone() wrapped_atts = torch.zeros([len(emb_lens), max(emb_lens)], dtype=torch.int, device=img_embeds.device) for i, emb in enumerate(emb_lists): wrapped_embs[i, :emb_lens[i]] = emb wrapped_atts[i, :emb_lens[i]] = 1 return wrapped_embs, wrapped_atts else: return img_embeds, atts_img def concat_emb_input_output(self, input_embs, input_atts, output_embs, output_atts): input_lens = [] cat_embs = [] cat_atts = [] for i in range(input_embs.size(0)): input_len = input_atts[i].sum() input_lens.append(input_len) cat_embs.append( torch.cat([ input_embs[i][:input_len], output_embs[i], input_embs[i][input_len:] ]) ) cat_atts.append( torch.cat([ input_atts[i][:input_len], output_atts[i], input_atts[i][input_len:] ]) ) cat_embs = torch.stack(cat_embs) cat_atts = torch.stack(cat_atts) return cat_embs, cat_atts, input_lens def forward(self, samples): image = samples["image"] img_embeds, atts_img = self.encode_img(image) if self.prompt_list: instruction = random.choice(self.prompt_list) else: instruction = samples["instruction_input"] if "instruction_input" in samples else None img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, instruction) self.llama_tokenizer.padding_side = "right" text = [t + self.end_sym for t in samples["answer"]] to_regress_tokens = self.llama_tokenizer( text, return_tensors="pt", padding="longest", truncation=True, max_length=self.max_txt_len, add_special_tokens=False ).to(image.device) batch_size = img_embeds.shape[0] bos = torch.ones([batch_size, 1], dtype=to_regress_tokens.input_ids.dtype, device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id bos_embeds = self.embed_tokens(bos) atts_bos = atts_img[:, :1] to_regress_embeds = self.embed_tokens(to_regress_tokens.input_ids) inputs_embeds, attention_mask, input_lens = \ self.concat_emb_input_output(img_embeds, atts_img, to_regress_embeds, to_regress_tokens.attention_mask) inputs_embeds = torch.cat([bos_embeds, inputs_embeds], dim=1) attention_mask = torch.cat([atts_bos, attention_mask], dim=1) part_targets = to_regress_tokens.input_ids.masked_fill( to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100 ) targets = ( torch.ones([inputs_embeds.shape[0], inputs_embeds.shape[1]], dtype=torch.long).to(image.device).fill_(-100) ) for i, target in enumerate(part_targets): targets[i, input_lens[i] + 1:input_lens[i] + len(target) + 1] = target # plus 1 for bos with self.maybe_autocast(): outputs = self.llama_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, return_dict=True, labels=targets, ) loss = outputs.loss return {"loss": loss} def embed_tokens(self, token_ids): if hasattr(self.llama_model.base_model, 'model'): ## lora wrapped model embeds = self.llama_model.base_model.model.model.embed_tokens(token_ids) else: embeds = self.llama_model.base_model.embed_tokens(token_ids) return embeds @classmethod def from_config(cls, cfg): vit_model = cfg.get("vit_model", "eva_clip_g") q_former_model = cfg.get("q_former_model", "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth") img_size = cfg.get("image_size") num_query_token = cfg.get("num_query_token") llama_model = cfg.get("llama_model") drop_path_rate = cfg.get("drop_path_rate", 0) use_grad_checkpoint = cfg.get("use_grad_checkpoint", False) vit_precision = cfg.get("vit_precision", "fp16") freeze_vit = cfg.get("freeze_vit", True) has_qformer = cfg.get("has_qformer", True) freeze_qformer = cfg.get("freeze_qformer", True) low_resource = cfg.get("low_resource", False) device_8bit = cfg.get("device_8bit", 0) prompt_path = cfg.get("prompt_path", "") prompt_template = cfg.get("prompt_template", "") max_txt_len = cfg.get("max_txt_len", 32) end_sym = cfg.get("end_sym", '\n') lora_r = cfg.get("lora_r", 0) lora_alpha = cfg.get("lora_alpha", 32) model = cls( vit_model=vit_model, q_former_model=q_former_model, img_size=img_size, drop_path_rate=drop_path_rate, use_grad_checkpoint=use_grad_checkpoint, vit_precision=vit_precision, freeze_vit=freeze_vit, has_qformer=has_qformer, freeze_qformer=freeze_qformer, num_query_token=num_query_token, llama_model=llama_model, prompt_path=prompt_path, prompt_template=prompt_template, max_txt_len=max_txt_len, end_sym=end_sym, low_resource=low_resource, device_8bit=device_8bit, lora_r=lora_r, lora_alpha=lora_alpha, ) ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4 if ckpt_path: print("Load BLIP2-LLM Checkpoint: {}".format(ckpt_path)) ckpt = torch.load(ckpt_path, map_location="cpu") msg = model.load_state_dict(ckpt['model'], strict=False) return model