""" Copyright (c) 2023, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import contextlib import logging import os import time import datetime import torch import torch.nn as nn import torch.distributed as dist import torch.nn.functional as F import minigpt4.common.dist_utils as dist_utils from minigpt4.common.dist_utils import download_cached_file from minigpt4.common.utils import is_url from minigpt4.common.logger import MetricLogger from minigpt4.models.base_model import BaseModel from minigpt4.models.Qformer import BertConfig, BertLMHeadModel from minigpt4.models.QformerMoE import BertMoELMHeadModel from minigpt4.models.QformerMoELN import BertMoELMHeadModelLNIn from minigpt4.models.QformerRouteMoE import BertMoERouteLMHeadModel from minigpt4.models.QformerRouteMoELN import BertMoERouteLMHeadModelLNIn from minigpt4.models.QformerRouteMoELNUni import BertMoERouteLMHeadModelLNInUniversal from minigpt4.models.QformerRouteMoEUni import BertMoERouteLMHeadModelUniversal from minigpt4.models.QformerRouteMoECLS import BertMoECLSRouteLMHeadModel from minigpt4.models.QformerRouteMoECLSLN import BertMoECLSRouteLMHeadModelLNIn from minigpt4.models.eva_vit import create_eva_vit_g from transformers import BertTokenizer from peft import ( LoraConfig, get_peft_model, prepare_model_for_int8_training, ) class Blip2Base(BaseModel): @classmethod def init_tokenizer(cls, truncation_side="right"): tokenizer = BertTokenizer.from_pretrained("/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased", truncation_side=truncation_side) tokenizer.add_special_tokens({"bos_token": "[DEC]"}) return tokenizer def maybe_autocast(self, dtype=torch.float16): # if on cpu, don't use autocast # if on gpu, use autocast with dtype if provided, otherwise use torch.float16 enable_autocast = self.device != torch.device("cpu") if enable_autocast: return torch.cuda.amp.autocast(dtype=dtype) else: return contextlib.nullcontext() @classmethod def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2): encoder_config = BertConfig.from_pretrained("/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased") encoder_config.encoder_width = vision_width # insert cross-attention layer every other block encoder_config.add_cross_attention = True encoder_config.cross_attention_freq = cross_attention_freq encoder_config.query_length = num_query_token Qformer = BertLMHeadModel.from_pretrained( "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased", config=encoder_config ) query_tokens = nn.Parameter( torch.zeros(1, num_query_token, encoder_config.hidden_size) ) query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) return Qformer, query_tokens @classmethod def init_RouteMoEQformerUni(cls, num_query_token, vision_width, moebert_expert_num, moebert_num_beams, route_method, moe_weight_type, cross_attention_freq=2, ln_position="out"): moe_encoder_config = BertConfig.from_pretrained("/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased") moe_encoder_config.encoder_width = vision_width moe_encoder_config.add_cross_attention = True moe_encoder_config.cross_attention_freq = cross_attention_freq moe_encoder_config.query_length = num_query_token moe_encoder_config.moebert_expert_num = moebert_expert_num moe_encoder_config.moebert_num_beams = moebert_num_beams moe_encoder_config.route_method = route_method moe_encoder_config.moe_weight_type = moe_weight_type if ln_position == "out": RouteMoEQformer = BertMoERouteLMHeadModelUniversal.from_pretrained( "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased", config=moe_encoder_config ) elif ln_position == "in": RouteMoEQformer = BertMoERouteLMHeadModelLNInUniversal.from_pretrained( "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased", config=moe_encoder_config ) query_tokens = nn.Parameter( torch.zeros(1, num_query_token, moe_encoder_config.hidden_size) ) query_tokens.data.normal_(mean=0.0, std=moe_encoder_config.initializer_range) return RouteMoEQformer, query_tokens @classmethod def init_RouteCLSMoEQformer(cls, num_query_token, vision_width, moebert_expert_num, moebert_num_beams, route_method, moe_weight_type, cross_attention_freq=2, ln_position="out"): moe_encoder_config = BertConfig.from_pretrained("/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased") moe_encoder_config.encoder_width = vision_width # insert cross-attention layer every other block moe_encoder_config.add_cross_attention = True moe_encoder_config.cross_attention_freq = cross_attention_freq moe_encoder_config.query_length = num_query_token moe_encoder_config.moebert_expert_num = moebert_expert_num moe_encoder_config.moebert_num_beams = moebert_num_beams moe_encoder_config.route_method = route_method moe_encoder_config.moe_weight_type = moe_weight_type if ln_position == "out": RouteMoEQformer = BertMoECLSRouteLMHeadModel.from_pretrained( "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased", config=moe_encoder_config ) elif ln_position == "in": # need to adjust RouteMoEQformer = BertMoECLSRouteLMHeadModelLNIn.from_pretrained( "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased", config=moe_encoder_config ) query_tokens = nn.Parameter( torch.zeros(1, num_query_token, moe_encoder_config.hidden_size) ) query_tokens.data.normal_(mean=0.0, std=moe_encoder_config.initializer_range) return RouteMoEQformer, query_tokens @classmethod def init_RouteMoEQformer(cls, num_query_token, vision_width, moebert_expert_num, moebert_num_beams, route_method, moe_weight_type, cross_attention_freq=2, ln_position="out"): moe_encoder_config = BertConfig.from_pretrained("/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased") moe_encoder_config.encoder_width = vision_width # insert cross-attention layer every other block moe_encoder_config.add_cross_attention = True moe_encoder_config.cross_attention_freq = cross_attention_freq moe_encoder_config.query_length = num_query_token moe_encoder_config.moebert_expert_num = moebert_expert_num moe_encoder_config.moebert_num_beams = moebert_num_beams moe_encoder_config.route_method = route_method moe_encoder_config.moe_weight_type = moe_weight_type if ln_position == "out": RouteMoEQformer = BertMoERouteLMHeadModel.from_pretrained( "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased", config=moe_encoder_config ) elif ln_position == "in": RouteMoEQformer = BertMoERouteLMHeadModelLNIn.from_pretrained( "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased", config=moe_encoder_config ) query_tokens = nn.Parameter( torch.zeros(1, num_query_token, moe_encoder_config.hidden_size) ) query_tokens.data.normal_(mean=0.0, std=moe_encoder_config.initializer_range) return RouteMoEQformer, query_tokens @classmethod def init_QformerMoE(cls, num_query_token, vision_width, moebert_expert_num, moebert_route_method, moebert_load_balance, moe_topk=1, use_balance_loss=True, moe_weight_type='l2_norm', cross_attention_freq=2,ln_position="out"): moe_encoder_config = BertConfig.from_pretrained("/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased") moe_encoder_config.encoder_width = vision_width # insert cross-attention layer every other block moe_encoder_config.add_cross_attention = True moe_encoder_config.cross_attention_freq = cross_attention_freq moe_encoder_config.query_length = num_query_token moe_encoder_config.moebert_expert_num = moebert_expert_num moe_encoder_config.moebert_route_method = moebert_route_method moe_encoder_config.moebert_load_balance = moebert_load_balance moe_encoder_config.moe_topk = moe_topk moe_encoder_config.use_balance_loss = use_balance_loss moe_encoder_config.moe_weight_type = moe_weight_type if ln_position == "out": MoEQformer = BertMoELMHeadModel.from_pretrained( "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased", config=moe_encoder_config ) elif ln_position == "in": MoEQformer = BertMoELMHeadModelLNIn.from_pretrained( "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased", config=moe_encoder_config ) query_tokens = nn.Parameter( torch.zeros(1, num_query_token, moe_encoder_config.hidden_size) ) query_tokens.data.normal_(mean=0.0, std=moe_encoder_config.initializer_range) return MoEQformer, query_tokens def init_llm(cls, llama_model_path, freeze_llm=True, lora_r=0, lora_target_modules=["q_proj","v_proj"], **lora_kargs): logging.info('Loading LLAMA') from transformers import LlamaTokenizer from minigpt4.models.modeling_llama import LlamaForCausalLM llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model_path, use_fast=False) # llama_tokenizer.add_special_tokens({'pad_token': '[PAD]'}) # llama_tokenizer.add_special_tokens({'bos_token': ''}) # llama_tokenizer.add_special_tokens({'eos_token': ''}) # llama_tokenizer.add_special_tokens({'unk_token': ''}) llama_tokenizer.pad_token = llama_tokenizer.unk_token llama_model = LlamaForCausalLM.from_pretrained( llama_model_path, torch_dtype=torch.float16, ) llama_model.resize_token_embeddings(len(llama_tokenizer)) # self.eos_token_id = self.llm_tokenizer( # self.llm_tokenizer.eos_token, add_special_tokens=False # ).input_ids[0] if freeze_llm==False and lora_r > 0: llama_model = prepare_model_for_int8_training(llama_model) loraconfig = LoraConfig( r=lora_r, bias="none", task_type="CAUSAL_LM", target_modules=lora_target_modules, **lora_kargs ) llama_model = get_peft_model(llama_model, loraconfig) llama_model.print_trainable_parameters() else: for name, param in llama_model.named_parameters(): param.requires_grad = False logging.info('Loading LLAMA Done') return llama_model, llama_tokenizer def init_vision_encoder( self, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision, freeze_vit=True ): assert model_name in [ "eva_clip_g", "eva2_clip_L", "clip_L", ], "vit model must be eva_clip_g, eva2_clip_L or clip_L" if model_name == "eva_clip_g": visual_encoder = create_eva_vit_g( img_size, drop_path_rate, use_grad_checkpoint, precision ) # elif model_name == "eva2_clip_L": # visual_encoder = create_eva2_vit_L( # img_size, drop_path_rate, use_grad_checkpoint, precision # ) elif model_name == "clip_L": from minigpt4.models.clip_vit import create_clip_vit_L visual_encoder = create_clip_vit_L(img_size, use_grad_checkpoint, precision) ln_vision = LayerNorm(visual_encoder.num_features) self.vit_name = model_name pytorch_total_params = sum(p.numel() for p in visual_encoder.parameters()) print(f'{model_name} clip vit params:') print(f"{pytorch_total_params * 1e-9:.2} B") if freeze_vit: for name, param in visual_encoder.named_parameters(): param.requires_grad = False visual_encoder = visual_encoder.eval() visual_encoder.train = disabled_train # freeze ln vision # for name, param in ln_vision.named_parameters(): # param.requires_grad = False # ln_vision = ln_vision.eval() # ln_vision.train = disabled_train logging.info("freeze vision encoder but not ln_vision") return visual_encoder, ln_vision def mean_pool_adjust_query_tokens(self, state_dict, num_query_token): group = 32 // num_query_token query_tokens = state_dict['query_tokens'].view(1,num_query_token,group,768) state_dict['query_tokens'] = torch.mean(query_tokens, dim=2) return state_dict def load_from_pretrained(self, url_or_filename, num_query_token=32): if is_url(url_or_filename): cached_file = download_cached_file( url_or_filename, check_hash=False, progress=True ) checkpoint = torch.load(cached_file, map_location="cpu") elif os.path.isfile(url_or_filename): checkpoint = torch.load(url_or_filename, map_location="cpu") else: raise RuntimeError("checkpoint url or path is invalid") state_dict = checkpoint["model"] # state_dict = self.mean_pool_adjust_query_tokens(state_dict, num_query_token) msg = self.load_state_dict(state_dict, strict=False) # logging.info("Missing keys {}".format(msg.missing_keys)) logging.info("load checkpoint from %s" % url_or_filename) return msg def get_optimizer_params(self, weight_decay, lr_scale=1): vit_num_layers = self.visual_encoder.get_num_layer() lr_scales = list(lr_scale ** (vit_num_layers + 1 - i) for i in range(vit_num_layers + 2)) parameter_group_names = {} parameter_group_vars = {} for name, param in self.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias"): group_name = "no_decay" this_weight_decay = 0. else: group_name = "decay" this_weight_decay = weight_decay if 'visual_encoder' in name: layer_id = self.visual_encoder.get_num_layer(name.replace('visual_encoder.','')) group_name = "vit_layer_%d_%s" % (layer_id, group_name) else: layer_id = None if group_name not in parameter_group_names: if layer_id is not None: scale = lr_scales[layer_id] else: scale = 1 parameter_group_names[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name]["params"].append(param) parameter_group_names[group_name]["params"].append(name) # import json # print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) optim_params = list(parameter_group_vars.values()) return optim_params def _lemmatize(self, answers): def apply(answer): doc = self.lemmatizer(answer) words = [] for token in doc: if token.pos_ in ["NOUN", "VERB"]: words.append(token.lemma_) else: words.append(token.text) answer = " ".join(words) return answer return [apply(answer) for answer in answers] @property def lemmatizer(self): if self._lemmatizer is None: try: import spacy self._lemmatizer = spacy.load("en_core_web_sm") except ImportError: logging.error( """ Please install spacy and en_core_web_sm model to apply lemmatization. python -m spacy download en_core_web_sm OR import spacy.cli spacy.cli.download("en_core_web_sm") """ ) exit(1) return self._lemmatizer def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) def compute_sim_matrix(model, data_loader, **kwargs): k_test = kwargs.pop("k_test") metric_logger = MetricLogger(delimiter=" ") header = "Evaluation:" logging.info("Computing features for evaluation...") start_time = time.time() texts = data_loader.dataset.text num_text = len(texts) text_bs = 256 text_ids = [] text_embeds = [] text_atts = [] for i in range(0, num_text, text_bs): text = texts[i : min(num_text, i + text_bs)] text_input = model.tokenizer( text, padding="max_length", truncation=True, max_length=35, return_tensors="pt", ).to(model.device) text_feat = model.forward_text(text_input) text_embed = F.normalize(model.text_proj(text_feat)) text_embeds.append(text_embed) text_ids.append(text_input.input_ids) text_atts.append(text_input.attention_mask) text_embeds = torch.cat(text_embeds, dim=0) text_ids = torch.cat(text_ids, dim=0) text_atts = torch.cat(text_atts, dim=0) vit_feats = [] image_embeds = [] for samples in data_loader: image = samples["image"] image = image.to(model.device) image_feat, vit_feat = model.forward_image(image) image_embed = model.vision_proj(image_feat) image_embed = F.normalize(image_embed, dim=-1) vit_feats.append(vit_feat.cpu()) image_embeds.append(image_embed) vit_feats = torch.cat(vit_feats, dim=0) image_embeds = torch.cat(image_embeds, dim=0) sims_matrix = [] for image_embed in image_embeds: sim_q2t = image_embed @ text_embeds.t() sim_i2t, _ = sim_q2t.max(0) sims_matrix.append(sim_i2t) sims_matrix = torch.stack(sims_matrix, dim=0) score_matrix_i2t = torch.full( (len(data_loader.dataset.image), len(texts)), -100.0 ).to(model.device) num_tasks = dist_utils.get_world_size() rank = dist_utils.get_rank() step = sims_matrix.size(0) // num_tasks + 1 start = rank * step end = min(sims_matrix.size(0), start + step) for i, sims in enumerate( metric_logger.log_every(sims_matrix[start:end], 50, header) ): topk_sim, topk_idx = sims.topk(k=k_test, dim=0) image_inputs = vit_feats[start + i].repeat(k_test, 1, 1).to(model.device) score = model.compute_itm( image_inputs=image_inputs, text_ids=text_ids[topk_idx], text_atts=text_atts[topk_idx], ).float() score_matrix_i2t[start + i, topk_idx] = score + topk_sim sims_matrix = sims_matrix.t() score_matrix_t2i = torch.full( (len(texts), len(data_loader.dataset.image)), -100.0 ).to(model.device) step = sims_matrix.size(0) // num_tasks + 1 start = rank * step end = min(sims_matrix.size(0), start + step) for i, sims in enumerate( metric_logger.log_every(sims_matrix[start:end], 50, header) ): topk_sim, topk_idx = sims.topk(k=k_test, dim=0) image_inputs = vit_feats[topk_idx.cpu()].to(model.device) score = model.compute_itm( image_inputs=image_inputs, text_ids=text_ids[start + i].repeat(k_test, 1), text_atts=text_atts[start + i].repeat(k_test, 1), ).float() score_matrix_t2i[start + i, topk_idx] = score + topk_sim if dist_utils.is_dist_avail_and_initialized(): dist.barrier() torch.distributed.all_reduce( score_matrix_i2t, op=torch.distributed.ReduceOp.SUM ) torch.distributed.all_reduce( score_matrix_t2i, op=torch.distributed.ReduceOp.SUM ) total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) logging.info("Evaluation time {}".format(total_time_str)) return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy()