import copy import pickle import torch import torch.nn as nn import torch.nn.functional as F import copy import pickle import torch import torch.nn as nn import torch.nn.functional as F class MoELayer(nn.Module): def __init__(self, hidden_size, expert, num_experts, route_method, topk=1, use_balance_loss=True, weight_type='raw_prob, topk(softmax)'): # remove hash list nn.Module.__init__(self) self.num_experts = num_experts self.experts = nn.ModuleList([copy.deepcopy(expert) for i in range(num_experts)]) self.route_method = route_method self.topk = topk self.use_balance_loss = use_balance_loss self.weight_type = weight_type if route_method in ["gate-token", "gate-sentence"]: self.gate = nn.Linear(hidden_size, num_experts, bias=False).float() elif route_method in ["gate-sentence-post"]: gate = nn.Linear(hidden_size, 1, bias=False).float() # self.gates = nn.ModuleList([copy.deepcopy(gate) for i in range(num_experts)]) self.gate = gate else: raise KeyError("Routing method not supported.") def _balancing_loss(self, prob_gate, num_tokens): # From MOEBERT # compute the load balancing loss # prob_gate,是 [bz, num_expert],每个样本被分配给每个expert的概率 # 等价于 VMOE 中 _gshard_auxiliary_loss P = prob_gate.mean(0) # torch.Size([num_expert]) 每个expert被分配到样本的平均概率 temp = num_tokens.float() f = temp / temp.sum(0, keepdim=True) # 每个expert被分配的sample比例 balance_loss = self.num_experts * torch.sum(P * f) return balance_loss def _importance_auxiliary_loss(self, prob_gate): # From VMOE # _importance_auxiliary_loss axis = tuple(range(prob_gate.ndim - 1)) # All except last. importance_per_expert = torch.sum(prob_gate, dim=axis) std_importance_per_expert = torch.std(importance_per_expert) mean_importance_per_expert = torch.mean(importance_per_expert) # Compute coefficient of variation (i.e. std/mean) squared. return (std_importance_per_expert / mean_importance_per_expert)**2 def _forward_gate_token(self, x): bsz, seq_len, dim = x.size() x = x.view(-1, dim) logits_gate = self.gate(x) prob_gate = F.softmax(logits_gate, dim=-1) gate = torch.argmax(prob_gate, dim=-1) order = gate.argsort(0) num_tokens = F.one_hot(gate, self.num_experts).gt(0).sum(0) gate_load = num_tokens.clone() x = x[order] # reorder according to expert number x = x.split(num_tokens.tolist(), dim=0) # a list of length self.num_experts # compute the load balancing loss P = prob_gate.mean(0) temp = num_tokens.float() f = temp / temp.sum(0, keepdim=True) balance_loss = self.num_experts * torch.sum(P * f) prob_gate = prob_gate.gather(dim=1, index=gate.unsqueeze(1)) prob_gate = prob_gate[order] prob_gate = prob_gate.split(num_tokens.tolist(), dim=0) def forward_expert(input_x, prob_x, expert_idx): input_x = self.experts[expert_idx].forward(input_x) input_x = input_x * prob_x return input_x x = [forward_expert(x[i], prob_gate[i], i) for i in range(self.num_experts)] x = torch.vstack(x) x = x[order.argsort(0)] # restore original order x = x.view(bsz, seq_len, dim) return x, balance_loss, gate_load def _forward_gate_sentence_post(self, x, attention_mask): """ x: query_attention_output; torch.Size([bz, 32, 768]) attention_mask: torch.ones([bz, 32]) bz = 4 x = torch.randn(bz,32,768) attention_mask = torch.ones([bz, 32]) """ # Prepare Input x attention_mask = torch.ones(attention_mask.shape[0], attention_mask.shape[1]).to(x.device) x_masked = x * attention_mask.unsqueeze(-1) # torch.Size([bz, 32, 768]) # FeedForward(x) & Forward Gate outputs = list() logits_gate_lst = list() for expert_idx in range(self.num_experts): output_x = self.experts[expert_idx].forward(x_masked) outputs.append(output_x.unsqueeze(0)) output_x_aver = torch.mean(output_x, dim=1) # gate_acore = self.gates[expert_idx](output_x_aver) gate_score = self.gate(output_x_aver) logits_gate_lst.append(gate_score) candidate_output = torch.cat(outputs) # torch.Size([num_expert, bz, 32, 768]) logits_gate = torch.cat(logits_gate_lst,dim=1)# torch.Size([bz, num_expert]) # Probabilities for each sample of what expert it should be sent to. prob_gate = F.softmax(logits_gate, dim=-1) # torch.Size([bz, num_experts]) if 'softmax(topk)' in self.weight_type: prob_gate1, gate = torch.topk(logits_gate, self.topk, dim=1) select_prob_gate = F.softmax(prob_gate1, dim=-1) else: select_prob_gate, gate = torch.topk(prob_gate, self.topk, dim=1) # gate, 每个样本被分配的expert: torch.Size([bz, topk]) # Calculate Balancing Loss if self.use_balance_loss: num_sentences = F.one_hot(gate, self.num_experts).sum(1).gt(0).sum(0) # 每个expert被分配的样本数 torch.Size([num_expert]) balance_loss = self._balancing_loss(prob_gate, num_sentences) else: balance_loss = 0.0 # Calculate Importance Loss importance_loss = self._importance_auxiliary_loss(prob_gate) # Reshap Prob_gate & Gate # expert_mask: [batch_size, topk, num_experts] # expert_gate: [batch_size, topk, num_experts] # combine_tensor: [batch_size, num_experts] expert_mask = F.one_hot(gate, self.num_experts) expert_gate = select_prob_gate.unsqueeze(-1) * expert_mask combine_tensor = torch.sum(expert_gate, dim=1) # combine_tensor = torch.zeros_like(prob_gate) # combine_tensor.scatter_(1, gate, select_prob_gate) # 等价操作,但可能不可导 candidate_output_ad = torch.permute(candidate_output, (1, 0, 2, 3)) # torch.Size([bz, num_expert, 32, 768]) results = candidate_output_ad * combine_tensor.unsqueeze(-1).unsqueeze(-1) # torch.Size([bz, num_expert, 32, 768]) outputs = torch.sum(results, dim=1) # torch.Size([bz, 32, 768]) import pdb;pdb.set_trace() return outputs, (balance_loss+importance_loss), combine_tensor def pre_router(self, x, attention_mask): # Prepare input x attention_mask = torch.ones(attention_mask.shape[0], attention_mask.shape[1]).to(x.device) x_masked = x * attention_mask.unsqueeze(-1) # torch.Size([bz, 32, 768]) x_average = torch.mean(x_masked, dim=1) # torch.Size([bz, 768]) # Forward Gate # logits_gate: [bz, num_experts] logits_gate = self.gate(x_average) # Probabilities for each sample of what expert it should be sent to. # prob_gate: [bz, num_experts] prob_gate = F.softmax(logits_gate, dim=-1) if 'softmax(topk)' in self.weight_type: prob_gate1, gate = torch.topk(logits_gate, self.topk, dim=1) select_prob_gate = F.softmax(prob_gate1, dim=-1) else: # topk(softmax) # Get Top-K experts for each sample # gate: [bz, topk] # select_prob_gate: [bz, topk] select_prob_gate, gate = torch.topk(prob_gate, self.topk, dim=1) # Reshap Prob_gate & Gate # expert_mask: [batch_size, topk, num_experts] # expert_gate: [batch_size, topk, num_experts] # combine_tensor: [batch_size, num_experts] expert_mask = F.one_hot(gate, self.num_experts) expert_gate = select_prob_gate.unsqueeze(-1) * expert_mask combine_tensor = torch.sum(expert_gate, dim=1) # Calculate Balancing Loss if self.use_balance_loss: num_sentences = F.one_hot(gate, self.num_experts).sum(1).gt(0).sum(0) # 每个expert被分配的样本数 torch.Size([num_expert]) balance_loss = self._balancing_loss(prob_gate, num_sentences) else: balance_loss = 0.0 # Calculate Importance Loss importance_loss = self._importance_auxiliary_loss(prob_gate) import pdb; pdb.set_trace() return expert_mask, combine_tensor, balance_loss, importance_loss def _forward_gate_sentence(self, x, attention_mask): """ x: query_attention_output , torch.Size([bz, 32, 768]) attention_mask: torch.ones([bz, 32]) ### Notice: the raw version of expert_attention_mask is the extended_attention_mask, which will be add to attention_score directly the values of extended_attention_mask are -0.0 or -10000 it should be adjust to 1/0 version to be processed by experts """ # Forward Router expert_mask, combine_tensor, balance_loss, importance_loss = self.pre_router(x, attention_mask) # Forward Expert FFN result = [] for expert_idx in range(self.num_experts): output_x = self.experts[expert_idx].forward(x) result.append(output_x.unsqueeze(0)) expert_output = torch.cat(result).permute(1,0,2,3) # torch.Size([batch_size, num_expert, num_tokens, hidden_states]) # multiply outputs of experts by the routing probability expert_outputs_combined = expert_output * combine_tensor.unsqueeze(-1).unsqueeze(-1) # torch.Size([batch_size, num_expert, num_tokens, hidden_states]) outputs = torch.sum(expert_outputs_combined, dim=1) # torch.Size([batch_size, num_tokens, hidden_states]) import pdb; pdb.set_trace() return outputs, (balance_loss+importance_loss), combine_tensor def forward(self, x, attention_mask): if self.route_method == "gate-token": x, balance_loss, gate_load = self._forward_gate_token(x) elif self.route_method == "gate-sentence": x, balance_loss, gate_load = self._forward_gate_sentence(x, attention_mask) elif self.route_method == "gate-sentence-post": x, balance_loss, gate_load = self._forward_gate_sentence_post(x, attention_mask) else: raise KeyError("Routing method not supported.") # import pdb; pdb.set_trace() return x, balance_loss, gate_load if __name__ == '__main__': import sys sys.path.append("/mnt/pfs-guan-ssai/nlu/wanghanzi/multimodal/PromptMoE") from minigpt4.models.QformerRouteMoE import BertConfig from minigpt4.models.QformerRouteMoE import FeedForward from minigpt4.models.moe.utils import ( moe_layer_judge, ) vision_width = 1408 cross_attention_freq = 2 num_query_token = 32 # init_QformerMoE config = BertConfig.from_pretrained("/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased") config.encoder_width = vision_width # insert cross-attention layer every other block config.add_cross_attention = True config.cross_attention_freq = cross_attention_freq config.query_length = num_query_token config.moebert_expert_num = 3 config.moebert_num_beams = 2 config.moebert_route_method = 'gate-sentence-post' config.moe_topk = 1 config.use_balance_loss = False # config.moe_weight_type = 'raw_prob, softmax(topk)' config.moe_weight_type = 'raw_prob, topk(softmax)' batch_size = 4 x2 = torch.randn(batch_size, 32, 768) beam_scores, expert_route = None, None for layer_num in [6, 8, 10]: layer_judge = moe_layer_judge(layer_num) ffn = FeedForward(config) gate = nn.Linear(768, config.moebert_expert_num, bias=False).float() experts_moe = MoELayer( hidden_size=config.hidden_size, expert=ffn, num_experts=config.moebert_expert_num, route_method=config.moebert_route_method, topk=config.moe_topk, use_balance_loss=config.use_balance_loss, weight_type=config.moe_weight_type, ) attn_mask = torch.ones([batch_size, 32]) layer_output = experts_moe(x2, attn_mask) hidden_states3, aux_loss, combine_tensor = layer_output print(combine_tensor) print(aux_loss) x2 = hidden_states3 print("------------------------------------") import pdb; pdb.set_trace()