import math import os import copy import pickle import torch from torch import nn from torch import nn import torch.nn.functional as F from minigpt4.models.Qformer import BertConfig def init_query_token_candidates(num_query_token, num_cand): encoder_config = BertConfig.from_pretrained("/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased") query_token_candidates = nn.Parameter( torch.zeros(num_cand, num_query_token, encoder_config.hidden_size) ) query_token_candidates.data.normal_(mean=0.0, std=encoder_config.initializer_range) return query_token_candidates class PromptMoEBase(nn.Module): def __init__(self, hidden_size, num_experts): super(PromptMoEBase, self).__init__() self.hidden_size = hidden_size self.num_experts = num_experts def _balancing_loss(self, prob_gate, num_tokens): # From MOEBERT # compute the load balancing loss # prob_gate,是 [bz, num_expert],每个样本被分配给每个expert的概率 # 等价于 VMOE 中 _gshard_auxiliary_loss P = prob_gate.mean(0) # torch.Size([num_expert]) 每个expert被分配到样本的平均概率 temp = num_tokens.float() f = temp / temp.sum(0, keepdim=True) # 每个expert被分配的sample比例 balance_loss = self.num_experts * torch.sum(P * f) return balance_loss def _importance_auxiliary_loss(self, prob_gate): # From VMOE # _importance_auxiliary_loss axis = tuple(range(prob_gate.ndim - 1)) # All except last. importance_per_expert = torch.sum(prob_gate, dim=axis) std_importance_per_expert = torch.std(importance_per_expert) mean_importance_per_expert = torch.mean(importance_per_expert) # Compute coefficient of variation (i.e. std/mean) squared. return (std_importance_per_expert / mean_importance_per_expert)**2 def _weighted_select_expert(self, expert_ids, prob_gate_i, query_token_candidates): # expert_ids: torch.Size([topk]) 为sample选出的topk个expert的idx # prob_gate_i: torch.Size([topk]) 该sample对应expert的概率值 # query_token_candidates: torch.Size([num_expert, 32, 768]) # 先对 prob_gate 归一化,加权平均 expert_qt 的值 weight = [prob_gate_i[expert_id].item() for expert_id in expert_ids] weight_norm = torch.tensor(weight) / torch.tensor(weight).sum() select_qts = [query_token_candidates[expert_id] for expert_id in expert_ids] weighted_qt = [select_qts[i] * weight_norm[i] for i in range(weight_norm.shape[0])] select = sum(weighted_qt).unsqueeze(0) return select class PostPromptMoE(PromptMoEBase): def __init__(self, hidden_size, num_experts, topk=1): super(PostPromptMoE, self).__init__(hidden_size, num_experts) self.gate = nn.Linear(hidden_size, 1, bias=False).float() self.topk = topk def _forward_gate_text_single_token(self, text_embeds, candi_query_tokens): # text embedding output from the blip2: torch.Size([bz, num_qt_candidates, 768]) # candidate query tokens to be selected : torch.Size([bz*num_qt_candidates, 32, 768]) logits_gate = self.gate(text_embeds).squeeze(2) # torch.Size([bz, num_qt_candidates]) prob_gate = F.softmax(logits_gate, dim=-1) # torch.Size([bz, num_qt_candidates]) _, gate = torch.topk(prob_gate, self.topk, dim=1) # gate, 每个样本被分配的expert: torch.Size([bz, topk]) num_tokens = F.one_hot(gate, self.num_experts).sum(1).gt(0).sum(0) # 每个expert被分配的样本数 torch.Size([num_expert]) gate_load = num_tokens.clone() # load balancing loss # balance_loss = self._balancing_loss(prob_gate, num_tokens) balance_loss = 0.0 # importance loss importance_loss = self._importance_auxiliary_loss(prob_gate) # select expert(query_token) for each sample out = [self._weighted_select_expert(gate[i], prob_gate[i], candi_query_tokens[i*self.num_experts:(i+1)*self.num_experts]) for i in range(gate.shape[0])] out = torch.vstack(out) # [bz, 32, 768] return out, balance_loss, importance_loss, gate_load, gate class PrePromptMoE(PromptMoEBase): def __init__(self, hidden_size, num_experts, query_token_candidates, route_method, topk=1): super(PrePromptMoE, self).__init__(hidden_size, num_experts) self.query_token_candidates = query_token_candidates self.route_method = route_method self.topk = topk if route_method in ["gate-token", "gate-single-token", "gate-sentence"]: self.gate = nn.Linear(hidden_size, num_experts, bias=False).float() else: raise KeyError("Routing method not supported.") def _forward_gate_single_token(self, x): bsz, seq_len, dim = x.size() x = x.view(-1, dim) logits_gate = self.gate(x) # torch.Size([bz, num_expert]) prob_gate = F.softmax(logits_gate, dim=-1) # torch.Size([bz, num_expert]) _, gate = torch.topk(prob_gate, self.topk, dim=1) # gate, 每个样本被分配的expert: torch.Size([bz, topk]) num_tokens = F.one_hot(gate, self.num_experts).sum(1).gt(0).sum(0) # 每个expert被分配的样本数 torch.Size([num_expert]) # gate = torch.argmax(prob_gate, dim=-1) # 每个样本被分配的expert # num_tokens = F.one_hot(gate, self.num_experts).gt(0).sum(0) gate_load = num_tokens.clone() # load balancing loss balance_loss = self._balancing_loss(prob_gate, num_tokens) # importance loss importance_loss = self._importance_auxiliary_loss(prob_gate) # select expert(query_token) for each sample out = [self._weighted_select_expert(gate[i], prob_gate[i], self.query_token_candidates) for i in range(gate.shape[0])] out = torch.vstack(out) # [bz, 32, 768] return out, balance_loss, importance_loss, gate_load, gate def _forward_gate_token(self, x): bsz, seq_len, dim = x.size() x = x.view(-1, dim) logits_gate = self.gate(x) # torch.Size([bz, num_expert]) prob_gate = F.softmax(logits_gate, dim=-1) # torch.Size([bz, num_expert]) gate = torch.argmax(prob_gate, dim=-1) # 每个样本被分配的expert order = gate.argsort(0) # index of sorted gate(ascending) num_tokens = F.one_hot(gate, self.num_experts).gt(0).sum(0) # 每个expert被分配的样本数 torch.Size([num_expert]) gate_load = num_tokens.clone() x = x[order] # reorder according to expert number x = x.split(num_tokens.tolist(), dim=0) # a list of length self.num_experts # load balancing loss balance_loss = self._balancing_loss(prob_gate, num_tokens) prob_gate = prob_gate.gather(dim=1, index=gate.unsqueeze(1)) prob_gate = prob_gate[order] prob_gate = prob_gate.split(num_tokens.tolist(), dim=0) # prob_gate tuple,根据expert分组 def select_expert(prob_x, expert_idx): input_x = self.query_token_candidates[expert_idx] # [1, 32, 768] # input_x = input_x * prob_x input_x = input_x.expand(prob_x.shape[0], -1, -1) return input_x out = [select_expert(prob_gate[i], i) for i in range(self.num_experts)] out = torch.vstack(out) out = out[order.argsort(0)] # restore original order return out, balance_loss, gate_load, gate def _forward_gate_sentence(self, x, attention_mask): ### TODO: refer MOEBERT return None def _forward_sentence_single_expert(self, x, attention_mask): ### TODO: refer MOEBERT return None