import dataclasses from copy import deepcopy from types import SimpleNamespace from typing import List, Union, Dict import torch from PIL import Image from torch import nn, Tensor from transformers import StoppingCriteria, StoppingCriteriaList from eval_scripts.eval_utils import load_image from imagebind.models.image_bind import ModalityType from minigpt4 import BaseProcessor Roles = SimpleNamespace( HUMAN="Human", ASSISTANT="Assistant" ) class Message: def __init__(self, role: str, content: Union[str, None]): self.role = role self.content = content @dataclasses.dataclass class Conversation: """A class that keeps all conversation history.""" system: str messages: List[Message] sep: str = "###" def get_prompt(self): ret = self.system + self.sep for message in self.messages: if message.content: ret += message.role + ": " + message.content + self.sep else: ret += message.role + ":" return ret def append_message(self, role, content): self.messages.append(Message(role, content)) def copy(self): return Conversation( system=self.system, messages=deepcopy(self.messages), sep=self.sep) def dict(self): return { "system": self.system, "messages": [(msg.role, msg.content) for msg in self.messages], "sep": self.sep } class StoppingCriteriaSub(StoppingCriteria): def __init__(self, stops=[], encounters=1): super().__init__() self.stops = stops def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): for stop in self.stops: if torch.all((stop == input_ids[0][-len(stop):])).item(): return True return False CONV_VISION = Conversation( system="Give the following image: ImageContent. " "You will be able to see the image once I provide it to you. Please answer my questions.", messages=[], sep="###", ) # TODO: If needed and possible, rewrite this file and re-organize the definition of components. class Chat: def __init__(self, model: nn.Module, processors: Dict[str, BaseProcessor], device: str = 'cuda:0' ): self.device = device self.model = model self.processors = processors stop_words_ids = [torch.tensor([835]).to(self.device), torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways. self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)]) self.just_uploaded = False def ask(self, text, conversation): # NOTE: the hard code for postfix is removed. # end_token = '' # if len(conversation.messages) > 0 and conversation.messages[-1].role == Roles.HUMAN \ # and conversation.messages[-1].content[-len(end_token):] == end_token: if self.just_uploaded: conversation.messages[-1].content = ' '.join([conversation.messages[-1].content, text]) self.just_uploaded = False else: conversation.append_message(Roles.HUMAN, text) def answer(self, conversation, emb_list, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.9, repetition_penalty=1.0, length_penalty=1, temperature=1.0, max_length=2000): # Generate an answer written by LLaMA conversation.append_message(Roles.ASSISTANT, None) embs = self.get_context_emb(conversation, emb_list) current_max_len = embs.shape[1] + max_new_tokens if current_max_len - max_length > 0: print('Warning: The number of tokens in current conversation exceeds the max length. ' 'The model will not see the contexts outside the range.') begin_idx = max(0, current_max_len - max_length) embs = embs[:, begin_idx:] outputs = self.model.llama_model.generate( inputs_embeds=embs, max_new_tokens=max_new_tokens, stopping_criteria=self.stopping_criteria, num_beams=num_beams, do_sample=True, min_length=min_length, top_p=top_p, repetition_penalty=repetition_penalty, length_penalty=length_penalty, temperature=temperature, ) output_token = outputs[0] if output_token[0] == 0: # the model might output a unknown token at the beginning. remove it output_token = output_token[1:] if output_token[0] == 1: # some users find that there is a start token at the beginning. remove it output_token = output_token[1:] output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False) output_text = output_text.split('###')[0] # remove the stop sign '###' output_text = output_text.split('Assistant:')[-1].strip() conversation.messages[-1].content = output_text return output_text, output_token.cpu().numpy() def upload_img(self, image: Union[str, Image.Image, Tensor], conversation: Conversation, emb_list: List[Tensor]): # Upload Image, Encode Image and Create a new message from human. image = load_image(image, self.processors[ModalityType.VISION]).to(self.device) all_embeddings = self.model.encode_inputs({ModalityType.VISION: image}) image_emb = all_embeddings[ModalityType.VISION] emb_list.append(image_emb) conversation.append_message(Roles.HUMAN, "") self.just_uploaded = True def get_context_emb(self, conversation: Conversation, emb_list: List[Tensor]): # Insert the embeddings into the prompts and queries. # NOTE: Assume the placeholders have been aligned to the embeddings! prompt = conversation.get_prompt() prompt_segs = prompt.split('') assert len(prompt_segs) == len(emb_list) + 1, "Unmatched numbers of placeholders and embeddings." seg_tokens = [ self.model.llama_tokenizer( seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids # only add bos to the first seg for i, seg in enumerate(prompt_segs) ] seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens] mixed_embs = [emb for pair in zip(seg_embs[:-1], emb_list) for emb in pair] + [seg_embs[-1]] mixed_embs = torch.cat(mixed_embs, dim=1) return mixed_embs