import copy import pickle import torch import torch.nn as nn import torch.nn.functional as F class UniRouteMoELayer(nn.Module): def __init__(self, hidden_size, expert, num_experts, num_beams=2, layer_judge=None, route_method="pre-route", weight_type="ffn_prob"): # remove hash list nn.Module.__init__(self) self.num_experts = num_experts #(1+other) self.num_route_experts = num_experts-1 self.num_beams = num_beams self.num_route_beam = num_beams-1 self.experts = nn.ModuleList([copy.deepcopy(expert) for i in range(num_experts)]) self.hidden_size = hidden_size self.layer_judge = layer_judge self.weight_type = weight_type self.route_method = route_method if self.route_method == "pre-route-uni": self.gate = nn.Linear(hidden_size, num_experts, bias=False).float() elif self.route_method in ["post-route-uni",'uni-cls-route', 'uni-cls-query-route', 'uni-cls-cross-route']: gate = nn.Linear(hidden_size, 1, bias=False).float() self.gate = gate def _importance_auxiliary_loss(self, prob_gate): # From VMOE # _importance_auxiliary_loss axis = tuple(range(prob_gate.ndim - 1)) # All except last. importance_per_expert = torch.sum(prob_gate, dim=axis) std_importance_per_expert = torch.std(importance_per_expert) mean_importance_per_expert = torch.mean(importance_per_expert) # Compute coefficient of variation (i.e. std/mean) squared. return (std_importance_per_expert / mean_importance_per_expert)**2 def beam_search(self, current_scores_log, beam_scores, expert_route, batch_size): if self.layer_judge=='first' and self.route_method in ['pre-route-uni', 'post-route-uni','uni-cls-route', 'uni-cls-query-route', 'uni-cls-cross-route']: # current_scores_log torch.Size([bz, num_experts-1]) assert beam_scores==None and expert_route==None current_scores = torch.exp(current_scores_log) topk_values, gate = torch.topk(current_scores, self.num_route_beam, dim=1) # gate, 每个样本被分配的expert: torch.Size([bz, topk]) beam_scores = topk_values.view(self.num_route_beam * batch_size) # torch.Size([bz * num_beams]) expert_route = gate.view(self.num_route_beam * batch_size).unsqueeze(1) # torch.Size([bz * num_beams,1]) beam_idx = torch.tensor(range(self.num_route_beam * batch_size)) else: batch_size = int(batch_size // self.num_route_beam) next_scores_raw = current_scores_log + torch.log(beam_scores).unsqueeze(1) # torch.Size([4*3, 5]) # 取log 之后,可以直接相加概率 next_scores_exp = torch.exp(next_scores_raw) next_scores_raw1 = next_scores_exp.view( batch_size, self.num_route_beam * self.num_route_experts ) # torch.Size([bz, num_route_beam*num_route_experts]) next_scores, next_experts = torch.topk(next_scores_raw1, self.num_route_beam, dim=1, largest=True, sorted=True) # next_tokens torch.Size([bz, num_route_beam]) next_batch_beam = list() for batch_idx in range(batch_size): next_sent_beam = list() for rank, (expert_id, expert_score) in enumerate( zip(next_experts[batch_idx], next_scores[batch_idx]) ): expert_id = expert_id.item() beam_id = expert_id // self.num_route_experts ex_id = expert_id % self.num_route_experts effective_beam_id = batch_idx*self.num_route_beam + beam_id next_sent_beam.append((expert_score, ex_id, effective_beam_id)) next_batch_beam.extend(next_sent_beam) beam_scores = beam_scores.new([x[0] for x in next_batch_beam]) beam_experts = expert_route[:,-1].new([x[1] for x in next_batch_beam]) beam_idx = expert_route[:,-1].new([x[2] for x in next_batch_beam]) pre_route = expert_route[beam_idx,:] expert_route = torch.cat([pre_route, beam_experts.unsqueeze(1)], dim=-1) return beam_scores, expert_route, beam_idx def forward_gate(self, x): """ TODO: Pre forward gate x : torch.Size([bz*(num_beams-1), 32, 768]) or torch.Size([bz, 32, 768]) prob_gate : torch.Size([bz*(num_beams-1), num_experts]) or torch.Size([bz, num_experts]) """ attention_mask = torch.ones(x.shape[0], x.shape[1]).to(x.device) x_masked = x * attention_mask.unsqueeze(-1) # torch.Size([bz*(num_beams-1), 32, 768]) x_average = torch.mean(x_masked, dim=1) # torch.Size([bz*(num_beams-1), 768]) logits_gate = self.gate(x_average) # torch.Size([bz*(num_beams-1), num_experts]) prob_gate = F.softmax(logits_gate, dim=-1) # torch.Size([bz*(num_beams-1), num_experts]) return prob_gate def forward_expert_ffn(self, x, expert_select, current_scores): """ x_repeat : [bz*num_beams, 32,768] expert_select : [bz*num_beams] current_scores : [bz*num_beams, num_experts] / [bz, num_experts] """ # import pdb;pdb.set_trace() outputs = list() for i in range(self.num_experts-1): output_x = self.experts[i].forward(x) outputs.append(output_x.unsqueeze(1)) candidate_output = torch.cat(outputs, dim=1) expert_select_matrix = F.one_hot(expert_select, self.num_experts) if self.weight_type == 'ffn_prob': tmp_prob = current_scores * expert_select_matrix candidate_output = candidate_output * tmp_prob.unsqueeze(-1).unsqueeze(-1) else: candidate_output = candidate_output * expert_select_matrix.unsqueeze(-1).unsqueeze(-1) output = torch.sum(candidate_output, dim=1) # import pdb;pdb.set_trace() return output # torch.Size([bz*(num_beams-1), 32, 768]) def forward_pre_route(self, x, beam_scores, expert_route, use_log=True): current_scores = self.forward_gate(x) # [bz, num_beams] / [bz*num_beams, num_beams] importance_loss = self._importance_auxiliary_loss(current_scores) if use_log: current_scores_log = torch.log(current_scores) # 取log之后可以直接相加 else: current_scores_log = current_scores # import pdb;pdb.set_trace() batch_size, num_tokens = x.shape[0], x.shape[1] beam_scores, expert_route, beam_idx = self.beam_search(current_scores_log, beam_scores, expert_route, batch_size) current_expert_select = expert_route[:,-1] if self.layer_judge=='first': # expand first dim to batch_size * num_beams replicated_tensor = x.unsqueeze(1).expand(batch_size, self.num_beams, num_tokens, self.hidden_size) x = replicated_tensor.contiguous().view(-1, num_tokens, self.hidden_size) # [bz*num_beams, 32,768] current_scores_t = current_scores.unsqueeze(1).expand(batch_size, self.num_beams, self.num_experts) current_scores = current_scores_t.contiguous().view(-1, self.num_experts) # [bz*num_beams, num_experts] input_x = x[beam_idx] candidate_output = self.forward_expert_ffn(input_x, current_expert_select, current_scores) # [bz*num_beams, 32,768] # import pdb;pdb.set_trace() return candidate_output, beam_scores, expert_route, beam_idx, importance_loss def calculate_cls_gate_score(self, cls_hidden, output_x): if self.route_method == 'uni-cls-route': # cls_hidden = [bz, 768] gate_score = self.gate(cls_hidden) # bz, 1 elif self.route_method == 'uni-cls-query-route': # add cls_hiddin on query_token mean pool hidden mean_output = torch.mean(output_x, dim=1) # bz, 768 gate_score = self.gate(mean_output+cls_hidden) # bz, 1 elif self.route_method == 'uni-cls-cross-route': # cls_hidden as Q, output_x as K, V calculate scaled dot-product attention between Q and K and V # cls_hidden: bz, 768 # output_x: bz, 32, 768 Q = cls_hidden.unsqueeze(1) # bz, 1, 768 K = output_x # bz, 32, 768 V = output_x # bz, 32, 768 # scaled dot-product attention QK = torch.matmul(Q, K.transpose(-1, -2)) / (K.size(-1) ** 0.5) # bz, 1, 32 QK = F.softmax(QK, dim=-1) # bz, 1, 32 gate_score = torch.matmul(QK, V) # bz, 1, 768 gate_score = gate_score.squeeze(1) # bz, 768 gate_score = self.gate(gate_score) # bz, 1 return gate_score def forward_route_uni(self, x, beam_scores, expert_route, use_log=True, cls_hidden=None): if beam_scores == None: batch_size = x.shape[0] x_masked, x_uniexpert = x, x # torch.Size([bz, 32, 768]) elif x.shape[0]/self.num_beams == beam_scores.shape[0]/self.num_route_beam: batch_size = int(x.shape[0]/self.num_beams) select_universal = [i*self.num_beams+self.num_route_beam for i in range(batch_size)] select_expert = [ x for x in range(batch_size*self.num_beams) if x not in select_universal] x_masked, x_uniexpert = x[select_expert],x[select_universal] num_tokens = x.shape[1] def forward_expert(input_x, expert_idx): output_x = self.experts[expert_idx].forward(input_x) return output_x #################### ### route expert #################### outputs = list() logits_gate_lst = list() for expert_idx in range(self.num_route_experts): # num_expert-1 output_x = forward_expert(x_masked, expert_idx) if self.route_method == 'post-route-uni': output_x_aver = torch.mean(output_x, dim=1) gate_score = self.gate(output_x_aver) elif self.route_method in ['uni-cls-route', 'uni-cls-query-route', 'uni-cls-cross-route'] and cls_hidden is not None: gate_score = self.calculate_cls_gate_score(cls_hidden, output_x) logits_gate_lst.append(gate_score) outputs.append(output_x.unsqueeze(0)) candidate_output_raw = torch.cat(outputs) # torch.Size([num_expert-1, bz*(num_beam-1), 32, 768]) logits_gate = torch.cat(logits_gate_lst,dim=1)# torch.Size([bz*(num_beam-1), num_expert-1]) current_scores = F.softmax(logits_gate, dim=-1) # torch.Size([bz*(num_beam-1), num_expert-1]) if use_log: current_scores_log = torch.log(current_scores) # 取log之后可以直接相加 torch.Size([bz*(num_beam-1), num_expert-1]) else: current_scores_log = current_scores importance_loss = self._importance_auxiliary_loss(current_scores) beam_scores, expert_route, beam_idx = self.beam_search(current_scores_log, beam_scores, expert_route, current_scores_log.shape[0]) # beam_scores torch.Size([bz*(num_beam-1)]), expert_route torch.Size([bz*(num_beam-1), layer_n]) current_select_expert = expert_route[:,-1] # torch.Size([bz*(num_beam-1)]) if self.layer_judge == 'first': replicated_tensor = candidate_output_raw.unsqueeze(2).expand(self.num_route_experts, batch_size, self.num_route_beam, num_tokens, self.hidden_size) candidate_output_raw = replicated_tensor.contiguous().view(self.num_route_experts, -1, num_tokens, self.hidden_size) # [bz*num_beams, 32,768] current_scores_t = current_scores.unsqueeze(1).expand(batch_size, self.num_route_beam, self.num_route_experts) current_scores = current_scores_t.contiguous().view(-1, self.num_route_experts) # [bz*(num_beams-1), num_experts-1] candidate_output = candidate_output_raw.permute(1, 0, 2, 3)[beam_idx] # torch.Size([8, 2, 32, 768]) expert_select_matrix = F.one_hot(current_select_expert, self.num_route_experts) if self.weight_type == 'ffn_prob': tmp_prob = current_scores[beam_idx] * expert_select_matrix output = candidate_output * tmp_prob.unsqueeze(-1).unsqueeze(-1) else: output = candidate_output * expert_select_matrix.unsqueeze(-1).unsqueeze(-1) experts_output = torch.sum(output, dim=1) # [bz*num_beams-1, 32, 768] #################### ### universal expert #################### uni_output = forward_expert(x_uniexpert, self.num_experts-1) # [bz, 32, 768] #################### ### Combine expert #################### output = list() for i in range(batch_size): expert_tmp = experts_output[i*self.num_route_beam: i*self.num_route_beam+self.num_route_beam,:,:] combine_tmp = torch.cat((expert_tmp, uni_output[i].unsqueeze(0))) output.append(combine_tmp) final_output = torch.cat(output) # [bz*num_beam, 32 ,768] # import pdb; pdb.set_trace() return final_output, beam_scores, expert_route, beam_idx, importance_loss def forward(self, x, attention_mask, beam_scores, expert_route, cls_hidden): """ if first_layer: x [bz, 32, 768] else: x [bz*num_beams, 32, 768] """ if self.route_method == 'pre-route-uni': candidate_output, beam_scores, expert_route, beam_idx, importance_loss = self.forward_pre_route(x, beam_scores, expert_route, use_log=True) elif self.route_method in ['post-route-uni', 'uni-cls-route', 'uni-cls-query-route', 'uni-cls-cross-route']: candidate_output, beam_scores, expert_route, beam_idx, importance_loss = self.forward_route_uni(x, beam_scores, expert_route, use_log=True, cls_hidden=cls_hidden) return candidate_output, beam_scores, expert_route, beam_idx, importance_loss if __name__ == '__main__': import sys sys.path.append("/mnt/pfs-guan-ssai/nlu/wanghanzi/multimodal/PromptMoE") from minigpt4.models.QformerRouteMoE import BertConfig from minigpt4.models.QformerRouteMoE import FeedForward from minigpt4.models.moe.utils import ( use_experts, moe_layer_judge, ) vision_width = 1408 cross_attention_freq = 2 num_query_token = 32 # init_QformerMoE config = BertConfig.from_pretrained("/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased") config.encoder_width = vision_width # insert cross-attention layer every other block config.add_cross_attention = True config.cross_attention_freq = cross_attention_freq config.query_length = num_query_token config.moebert_expert_num = 3 config.moebert_num_beams = 3 config.moebert_route_method = 'gate-sentence' config.moe_topk = 3 config.use_balance_loss = False config.moe_weight_type = 'l2_norm' batch_size = 4 x = torch.randn(batch_size, 32, 768) beam_scores, expert_route = None, None x1 = x x2 = x x3 = x beam_scores1, expert_route1 = None, None beam_scores2, expert_route2 = None, None for layer_num in [6, 8, 10]: layer_judge = moe_layer_judge(layer_num) ffn = FeedForward(config) # experts_post = RouteMoELayer( # hidden_size=768, # expert=ffn, # num_experts=config.moebert_expert_num, # num_beams=config.moebert_num_beams, # layer_judge = layer_judge, # route_method = "post-route", # weight_type="ffn_prob" # ) # layer_output = experts_post(x1, None, beam_scores1, expert_route1, False) # hidden_states2, beam_scores1, expert_route1, beam_idx, importance_loss = layer_output # print(beam_scores1) # print(expert_route1) # print(beam_idx) # print(importance_loss) # x1 = hidden_states2 experts_post = UniRouteMoELayer( hidden_size=768, expert=ffn, num_experts=config.moebert_expert_num, num_beams=config.moebert_num_beams, layer_judge = layer_judge, route_method = "uni-cls-cross-rout[e", weight_type="ffn_prob" ) layer_output = experts_post(x2, None, beam_scores2, expert_route2, False) hidden_states3, beam_scores2, expert_route2, beam_idx2, importance_loss2 = layer_output print(beam_scores2) print(expert_route2) print(beam_idx2) print(importance_loss2) x2 = hidden_states3 print("------------------------------------") import pdb; pdb.set_trace()