# from math import factorial # def combine_number(n,k): # combinations = factorial(n) / factorial(n - k) # return combinations # # 定义一个函数来计算给定字符串中平衡串的子序列数量 # def count_balanced_subsequences(s): # MOD = 10**9 + 7 # # 初始化字母计数器 # count = [0] * 26 # for char in s: # count[ord(char) - ord('a')] += 1 # result = 0 # while sum(count)>0: # cnt = 0 # for i in range(26): # if count[i] > 0: # cnt += 1 # count[i] -= 1 # print(count) # result += combine_number(cnt,2) # print(result) # return result # # 示例输入 # n = 5 # s = "ababc" # # 计算结果 # result = count_balanced_subsequences(s) # print(result) # def calculate_scores(k, x, y): # # 根据题目描述,我们有以下等式: # # a + b + c = k # # c = a + x # # c = b - y # # 由上面两个等式可得:a + x = b - y # # 因此我们可以解这个线性方程组得到a, b, c的值 # # a + (a + x) + (a + x + y) = k # # 3a + 2x + y = k # # 解得: # a = (k - 2*x - y) // 3 # c = a + x # b = c + y # return a, b, c # # 示例输入 # k, x, y = 441, 1, -20 # # 计算输出 # a, b, c = calculate_scores(k, x, y) # print(a, b, c) # def min_operations_to_equal(s, t): # operations = [] # i = len(s) - 1 # while i >= 0: # if s[i] != t[i]: # operations.append((1, i + 1, t[i])) # s = t[i] * (i + 1) + s[i + 1:] # 更新s字符串为操作后的状态 # i -= 1 # return operations # # 示例输入 # s = "aabc" # t = "abcc" # # 计算所需的最小操作次数及具体操作 # operations1 = min_operations_to_equal(s, t) # operations2 = min_operations_to_equal(t, s) # if len(operations1) < len(operations2): # operations = operations1 # else: # operations = operations2 # # 输出结果 # print(len(operations)) # for op in operations: # print(*op) # #include # #include # #include # using namespace std; # struct node { # char a, b; # }ans[100100]; # char col[9] = {'','a','b' # int main(){ # string x; cin >>x; # char w=x[0],s=x[1]; # int ww=w-'a'+ 1; # int ss =s -'0'; # int tot = 0; # for(int i=1;i<=8; ++i){ # if(1 != ss){ # ans[++tot]=(node){w,(char)(i +'@')}; # } # } # for(int i=1; i <= 8; ++i){ # if(1 != ww){ # ans[++tot]=(node){colli], s}; # } # } # for(int i=1;i<8;++1){ # for(int j=1;j<=8; ++j){ # if(i+j==ww + ss){ # if(i !=ss |lj != ww){ # ans[++tot]=(node){col[j],(char)} # } # } # } # } # for(int i=1;i<=8;++i){ # for(int j=1;j<=8; ++j){ # if(i-j=ss-ww){ # if(i !=ss ||j!= ww){ # ans[++tot]=(node)fcol[j],(char) # } # } # } # } # cout << tot.<< endl; # for(int i =1; i <= tot; ++i) cout << ans[i].a << # return 0; # #include # #include using namespace stdj # const int N= 1001008 # int n, a[N]; # int main(){ # cin >> n; # int tot1 = 0, tot0 = 0; # for(int i=1;i<= n; ++1){ # cin >> a[i]; # if(a[i]%2=0) tot0++; # else tot1++; # cout << abs(tot1-(n/2))<