## Evaluation Instruction for MiniGPT-v2 ### Data preparation Images download Image source | Download path --- | :---: OKVQA| annotations    images gqa | annotations    images hateful meme | images and annotations iconqa | images and annotation vizwiz | images and annotation RefCOCO | annotations RefCOCO+ | annotations RefCOCOg | annotations ### Evaluation dataset structure ``` ${MINIGPTv2_EVALUATION_DATASET} ├── gqa │ └── test_balanced_questions.json │ ├── testdev_balanced_questions.json │ ├── gqa_images ├── hateful_meme │ └── hm_images │ ├── dev.jsonl ├── iconvqa │ └── iconvqa_images │ ├── choose_text_val.json ├── vizwiz │ └── vizwiz_images │ ├── val.json ├── vsr │ └── vsr_images ├── okvqa │ ├── okvqa_test_split.json │ ├── mscoco_val2014_annotations_clean.json │ ├── OpenEnded_mscoco_val2014_questions_clean.json ├── refcoco │ └── instances.json │ ├── refs(google).p │ ├── refs(unc).p ├── refcoco+ │ └── instances.json │ ├── refs(unc).p ├── refercocog │ └── instances.json │ ├── refs(google).p │ ├── refs(und).p ... ``` ### environment setup ``` export PYTHONPATH=$PYTHONPATH:/path/to/directory/of/MiniGPT-4 ``` ### evaluation config files Set **llama_model** to the path of LLaMA model. Set **ckpt** to the path of our pretrained model. Set **eval_file_path** to the path of the annotation files for the evaluation data. Set **img_path** to the path of the images. Set **save_path** to the path of saving evaluation output. - [minigpt4/eval_configs/minigptv2_benchmark_evaluation.yaml](../minigpt4/eval_configs/minigptv2_benchmark_evaluation.yaml) ### start evalauting RefCOCO, RefCOCO+, RefCOCOg port=port_number cfg_path=/path/to/eval_configs/minigptv2_benchmark_evaluation.yaml dataset | --- | refcoco | refcoco+ | refcocog | ``` torchrun --master-port ${port} --nproc_per_node 1 eval_ref.py \ --cfg-path ${cfg_path} --dataset dataset_name ``` ### start evaluating visual question answering port=port_number cfg_path=/path/to/eval_configs/minigptv2_benchmark_evaluation.yaml eval_file_path=/path/to/eval/annotation/path image_path=/path/to/eval/image/path save_path=/path/to/save/path ckpt=/path/to/evaluation/checkpoint split=evaluation_data_split dataset=dataset_type dataset_names | --- | okvqa | vizwiz | iconvqa | gqa | vsr | hm | ``` torchrun --master-port ${port} --nproc_per_node 1 eval_vqa.py \ --cfg-path ${cfg_path} --img_path ${image_path} --eval_file_path ${eval_file_path} --save_path ${save_path} \ --ckpt ${ckpt} --split ${split} --dataset ${dataset} --lora_r 64 --lora_alpha 16 \ --batch_size 10 --max_new_tokens 20 --resample ```