from collections import OrderedDict import json import os import random import torch from PIL import Image from minigpt4.datasets.datasets.vqa_datasets import VQADataset #, VQAEvalDataset import argparse import numpy as np import torch import torch.backends.cudnn as cudnn import torchvision.transforms as T from PIL import Image, ImageDraw from tqdm import tqdm import sys # sys.path.append("/mnt/pfs-guan-ssai/nlu/wanghanzi/multimodal/LAVIS") from minigpt4.common.registry import registry import minigpt4.tasks as tasks from minigpt4.common.config import Config from minigpt4.common.dist_utils import get_rank from minigpt4.models import load_preprocess from minigpt4.common.logger import setup_logger from torch.utils.data import DataLoader def parse_args(): parser = argparse.ArgumentParser(description="Demo") # parser.add_argument("-f", help="jupyter notebook") parser.add_argument("--cfg-path", default="/mnt/pfs-guan-ssai/nlu/wanghanzi/multimodal/PromptMoE/minigpt4/projects/minigpt/train/minigptv2_finetune.yaml", help="path to configuration file.") parser.add_argument("--gpu-id", type=int, default=5, help="specify the gpu to load the model.") parser.add_argument( "--options", nargs="+", help="override some settings in the used config, the key-value pair " "in xxx=yyy format will be merged into config file (deprecate), " "change to --cfg-options instead.", ) args = parser.parse_args() return args def setup_seeds(config): seed = config.run_cfg.seed + get_rank() random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) cudnn.benchmark = False cudnn.deterministic = True # build config device = torch.device("cuda:5" if torch.cuda.is_available() else "cpu") cfg = Config(parse_args()) setup_seeds(cfg) print(cfg._convert_node_to_json(cfg.config)) setup_logger() cfg.pretty_print() task = tasks.setup_task(cfg) datasets = task.build_datasets(cfg)