import copy import pickle import torch import torch.nn as nn import torch.nn.functional as F class MoELayer(nn.Module): def __init__(self, hidden_size, expert, gate, num_experts, route_method, topk=1, use_balance_loss=True, weight_type='l2_norm'): # remove hash list nn.Module.__init__(self) self.num_experts = num_experts self.experts = nn.ModuleList([copy.deepcopy(expert) for i in range(num_experts)]) self.route_method = route_method self.topk = topk self.use_balance_loss = use_balance_loss self.weight_type = weight_type if route_method in ["gate-token", "gate-sentence"]: self.gate = gate else: raise KeyError("Routing method not supported.") def _forward_gate_sentence(self, x, attention_mask): """ x: query_attention_output , torch.Size([bz, 32, 768]) attention_mask: torch.ones([bz, 32]) ### Notice: the raw version of expert_attention_mask is the extended_attention_mask, which will be add to attention_score directly the values of extended_attention_mask are -0.0 or -10000 it should be adjust to 1/0 version to be processed by experts """ attention_mask = torch.ones(attention_mask.shape[0], attention_mask.shape[1]).to(x.device) x_masked = x * attention_mask.unsqueeze(-1) # torch.Size([bz, 32, 768]) x_average = x_masked.sum(1) / attention_mask.unsqueeze(-1).sum(1) # torch.Size([bz, 768]) logits_gate = self.gate(x_average) # torch.Size([bz, num_experts]) prob_gate = F.softmax(logits_gate, dim=-1) # torch.Size([bz, num_experts]) select_prob_gate, gate = torch.topk(prob_gate, self.topk, dim=1) # gate, 每个样本被分配的expert: torch.Size([bz, topk]) # 这里用l2 norm 去加权 if self.weight_type == 'l2_norm': # normalized_tensor = torch.nn.functional.normalize(select_prob_gate, p=2, dim=0) # L2 Normalization torch.Size([bz, topk]) normalized_tensor = select_prob_gate num_sentences = F.one_hot(gate, self.num_experts).sum(1).gt(0).sum(0) # 每个expert被分配的样本数 torch.Size([num_expert]) gate_load = num_sentences.clone() # forward experts def forward_expert(input_x, expert_idx): input_x = self.experts[expert_idx].forward(input_x) return input_x result_lst = list() for i in range(self.topk): # top1、top2... 分别为一组,进行gate分组之后过expert,然后乘以概率后相加 tmp_gate = gate[:,i] tmp_prob = normalized_tensor[:,i].unsqueeze(-1).unsqueeze(-1) order = tmp_gate.argsort(0) num_sentences_t = F.one_hot(tmp_gate, self.num_experts).gt(0).sum(0) x1 = x[order] # reorder according to expert number x1 = x1.split(num_sentences_t.tolist(), dim=0) # a list of length self.num_experts result = [] for i in range(self.num_experts): if x1[i].size(0) > 0: result.append(forward_expert(x1[i], i)) result = torch.vstack(result) result = result[order.argsort(0)] # restore original order # result_lst.append(result * tmp_prob) # result * prob result_lst.append(result) # result * prob moe_result = sum(result_lst) print('Layer Qformer MoE: \n',prob_gate) return moe_result, select_prob_gate, gate def _forward_gate_sentence_post(self, x, attention_mask): """ x: query_attention_output; torch.Size([bz, 32, 768]) attention_mask: torch.ones([bz, 32]) bz = 4 x = torch.randn(bz,32,768) attention_mask = torch.ones([bz, 32]) """ attention_mask = torch.ones(attention_mask.shape[0], attention_mask.shape[1]).to(x.device) x_masked = x * attention_mask.unsqueeze(-1) # torch.Size([bz, 32, 768]) def forward_expert(input_x, expert_idx): # input_x += torch.randn(4,32,768) # return input_x output_x = self.experts[expert_idx].forward(input_x) return output_x outputs = list() logits_gate_lst = list() for expert_idx in range(self.num_experts): output_x = forward_expert(x_masked, expert_idx) outputs.append(output_x.unsqueeze(0)) output_x_aver = output_x.sum(1) / attention_mask.unsqueeze(-1).sum(1) # torch.Size([bz, 768]) # gate_acore = self.gates[expert_idx](output_x_aver) gate_score = self.gate(output_x_aver) logits_gate_lst.append(gate_score) candidate_output = torch.cat(outputs) # torch.Size([num_expert, bz, 32, 768]) logits_gate = torch.cat(logits_gate_lst,dim=1)# torch.Size([bz, num_expert]) prob_gate = F.softmax(logits_gate, dim=-1) # torch.Size([bz, num_experts]) topk_values, gate = torch.topk(prob_gate, self.topk, dim=1) # gate, 每个样本被分配的expert: torch.Size([bz, topk]) num_sentences = F.one_hot(gate, self.num_experts).sum(1).gt(0).sum(0) # 每个expert被分配的样本数 torch.Size([num_expert]) gate_load = num_sentences.clone() # load balancing loss if self.use_balance_loss: balance_loss = self._balancing_loss(prob_gate, num_sentences) else: balance_loss = 0.0 # importance loss importance_loss = self._importance_auxiliary_loss(prob_gate) # output_average = candidate_output.sum(2) / candidate_attn_mask.unsqueeze(-1).sum(2) # torch.Size([num_expert, bz, 768]) # output_average = torch.permute(output_average, (1, 0, 2)) # torch.Size([bz, num_expert, 768]) # logits_gate = self.gate(output_average) # torch.Size([bz, num_experts, 1]) prob_gate_topk = torch.zeros_like(prob_gate) prob_gate_topk.scatter_(1, gate, topk_values) prob_gate_normalized = prob_gate_topk / prob_gate_topk.sum(dim=1, keepdim=True) # torch.Size([bz, num_expert]) candidate_output_ad = torch.permute(candidate_output, (1, 0, 2, 3)) # torch.Size([bz, num_expert, 32, 768]) results = prob_gate_normalized.unsqueeze(-1).unsqueeze(-1) * candidate_output_ad # torch.Size([bz, num_expert, 32, 768]) moe_result = torch.sum(results, dim=1) # torch.Size([bz, 32, 768]) import pdb;pdb.set_trace() return moe_result, (balance_loss+importance_loss), prob_gate_normalized def forward(self, x, attention_mask): if self.route_method == "gate-token": x, balance_loss, gate_load = self._forward_gate_token(x) elif self.route_method == "gate-sentence": if x.size(0) == 1: x, balance_loss, gate_load = self._forward_sentence_single_expert(x, attention_mask) else: x, balance_loss, gate_load = self._forward_gate_sentence(x, attention_mask) elif self.route_method == "gate-sentence-post": x, balance_loss, gate_load = self._forward_gate_sentence_post(x, attention_mask) else: raise KeyError("Routing method not supported.") return x, balance_loss, gate_load class RouteMoELayer(nn.Module): def __init__(self, hidden_size, expert, num_experts, num_beams=2, layer_judge=None, route_method="pre-route", weight_type="ffn_prob"): # remove hash list nn.Module.__init__(self) self.num_experts = num_experts self.experts = nn.ModuleList([copy.deepcopy(expert) for i in range(num_experts)]) self.num_beams = num_beams self.hidden_size = hidden_size self.layer_judge = layer_judge self.weight_type = weight_type self.route_method = route_method if self.route_method == "pre-route": self.gate = nn.Linear(hidden_size, num_experts, bias=False).float() elif self.route_method in ["post-route", "post-route-dp"]: gate = nn.Linear(hidden_size, 1, bias=False).float() self.gate = gate # self.gates = nn.ModuleList([copy.deepcopy(gate) for i in range(num_experts)]) def _importance_auxiliary_loss(self, prob_gate): # From VMOE # _importance_auxiliary_loss axis = tuple(range(prob_gate.ndim - 1)) # All except last. importance_per_expert = torch.sum(prob_gate, dim=axis) std_importance_per_expert = torch.std(importance_per_expert) mean_importance_per_expert = torch.mean(importance_per_expert) # Compute coefficient of variation (i.e. std/mean) squared. return (std_importance_per_expert / mean_importance_per_expert)**2 def forward_gate(self, x): """ x : torch.Size([bz*num_beams, 32, 768]) or torch.Size([bz, 32, 768]) prob_gate : torch.Size([bz*num_beams, num_experts]) or torch.Size([bz, num_experts]) """ attention_mask = torch.ones(x.shape[0], x.shape[1]).to(x.device) x_masked = x * attention_mask.unsqueeze(-1) # torch.Size([bz*num_beams, 32, 768]) x_average = x_masked.sum(1) / attention_mask.unsqueeze(-1).sum(1) # torch.Size([bz*num_beams, 768]) logits_gate = self.gate(x_average) # torch.Size([bz*num_beams, num_experts]) prob_gate = F.softmax(logits_gate, dim=-1) # torch.Size([bz*num_beams, num_experts]) return prob_gate def beam_search_backup(self, current_scores_log, beam_scores, expert_route, batch_size): if self.layer_judge=='first' and self.route_method=='pre-route': # current_scores_log torch.Size([bz, num_experts]) assert beam_scores==None and expert_route==None current_scores = torch.exp(current_scores_log) topk_values, gate = torch.topk(current_scores, self.num_beams, dim=1) # gate, 每个样本被分配的expert: torch.Size([bz, topk]) beam_scores = topk_values.view(self.num_beams * batch_size) # torch.Size([bz * num_beams]) expert_route = gate.view(self.num_beams * batch_size).unsqueeze(1) # torch.Size([bz * num_beams,1]) beam_idx = torch.tensor(range(self.num_beams * batch_size)) else: if self.layer_judge=='first' and self.route_method == 'post-route': batch_size = batch_size next_scores_raw1 = torch.exp(current_scores_log) # torch.Size([bz, num_beams*num_experts]) else: batch_size = int(batch_size // self.num_beams) next_scores_raw = current_scores_log + torch.log(beam_scores).unsqueeze(1) # torch.Size([4*3, 5]) # 取log 之后,可以直接相加概率 next_scores_exp = torch.exp(next_scores_raw) next_scores_raw1 = next_scores_exp.view( batch_size, self.num_beams * self.num_experts ) # torch.Size([bz, num_beams*num_experts]) next_scores, next_experts = torch.topk(next_scores_raw1, self.num_beams, dim=1, largest=True, sorted=True) # next_scores torch.Size([bz, num_beams]) # next_tokens torch.Size([bz, num_beams]) next_batch_beam = list() for batch_idx in range(batch_size): next_sent_beam = list() for rank, (expert_id, expert_score) in enumerate( zip(next_experts[batch_idx], next_scores[batch_idx]) ): expert_id = expert_id.item() beam_id = expert_id // self.num_experts ex_id = expert_id % self.num_experts effective_beam_id = batch_idx*self.num_beams + beam_id next_sent_beam.append((expert_score, ex_id, effective_beam_id)) next_batch_beam.extend(next_sent_beam) import pdb;pdb.set_trace() if self.layer_judge=='first' and self.route_method == 'post-route': beam_scores = next_scores.view(self.num_beams * batch_size) # torch.Size([bz * num_beams]) expert_route = next_experts.view(self.num_beams * batch_size) beam_scores = beam_scores.new([x[0] for x in next_batch_beam]) beam_experts = expert_route.new([x[1] for x in next_batch_beam]).unsqueeze(-1) beam_idx = expert_route.new([int(x[2]/self.num_beams) for x in next_batch_beam]) expert_route = beam_experts else: beam_scores = beam_scores.new([x[0] for x in next_batch_beam]) beam_experts = expert_route[:,-1].new([x[1] for x in next_batch_beam]) beam_idx = expert_route[:,-1].new([x[2] for x in next_batch_beam]) pre_route = expert_route[beam_idx,:] expert_route = torch.cat([pre_route, beam_experts.unsqueeze(1)], dim=-1) return beam_scores, expert_route, beam_idx def dp_search(self, current_scores_log, beam_scores, expert_route, batch_size): if self.layer_judge=='first' and self.route_method in ['pre-route', 'post-route', 'post-route-dp']: # current_scores_log torch.Size([bz, num_experts]) assert beam_scores==None and expert_route==None current_scores = torch.exp(current_scores_log) topk_values, gate = torch.topk(current_scores, self.num_beams, dim=1) # gate, 每个样本被分配的expert: torch.Size([bz, topk]) beam_scores = topk_values.view(self.num_beams * batch_size) # torch.Size([bz * num_beams]) expert_route = gate.view(self.num_beams * batch_size).unsqueeze(1) # torch.Size([bz * num_beams,1]) beam_idx = torch.tensor(range(self.num_beams * batch_size)) else: batch_size = int(batch_size // self.num_beams) next_scores_raw = current_scores_log + torch.log(beam_scores).unsqueeze(1) # torch.Size([4*3, 5]) # 取log 之后,可以直接相加概率 next_scores_exp = torch.exp(next_scores_raw) import pdb;pdb.set_trace() next_scores_raw, next_experts_raw = torch.topk(next_scores_exp, 1, dim=1, largest=True, sorted=True) next_scores = next_scores_raw.view(batch_size, self.num_beams) next_experts = next_experts_raw.view(batch_size, self.num_beams) # next_scores, next_experts = torch.topk(current_scores_log, 1, dim=1, largest=True, sorted=True) # equal 等价 # next_scores torch.Size([bz * num_beams, 1]) # next_tokens torch.Size([bz * num_beams, 1]) next_batch_beam = list() for batch_idx in range(batch_size): next_sent_beam = list() expert_id = next_experts[batch_idx] expert_score = next_scores[batch_idx] values, index = torch.topk(expert_score, self.num_beams, dim=0, largest=True, sorted=True) for i in range(self.num_beams): beam_id = index[i].item() ex_id = expert_id[beam_id].item() effective_beam_id = batch_idx*self.num_beams + beam_id next_sent_beam.append((values[i], ex_id, effective_beam_id)) next_batch_beam.extend(next_sent_beam) import pdb;pdb.set_trace() beam_scores = beam_scores.new([x[0] for x in next_batch_beam]) beam_experts = expert_route[:,-1].new([x[1] for x in next_batch_beam]) beam_idx = expert_route[:,-1].new([x[2] for x in next_batch_beam]) pre_route = expert_route[beam_idx,:] expert_route = torch.cat([pre_route, beam_experts.unsqueeze(1)], dim=-1) return beam_scores, expert_route, beam_idx def beam_search(self, current_scores_log, beam_scores, expert_route, batch_size): if self.layer_judge=='first' and self.route_method in ['pre-route', 'post-route']: # current_scores_log torch.Size([bz, num_experts]) assert beam_scores==None and expert_route==None current_scores = torch.exp(current_scores_log) topk_values, gate = torch.topk(current_scores, self.num_beams, dim=1) # gate, 每个样本被分配的expert: torch.Size([bz, topk]) beam_scores = topk_values.view(self.num_beams * batch_size) # torch.Size([bz * num_beams]) expert_route = gate.view(self.num_beams * batch_size).unsqueeze(1) # torch.Size([bz * num_beams,1]) beam_idx = torch.tensor(range(self.num_beams * batch_size)) import pdb;pdb.set_trace() else: batch_size = int(batch_size // self.num_beams) next_scores_raw = current_scores_log + torch.log(beam_scores).unsqueeze(1) # torch.Size([4*3, 5]) # 取log 之后,可以直接相加概率 next_scores_exp = torch.exp(next_scores_raw) import pdb;pdb.set_trace() next_scores_raw1 = next_scores_exp.view( batch_size, self.num_beams * self.num_experts ) # torch.Size([bz, num_beams*num_experts]) next_scores, next_experts = torch.topk(next_scores_raw1, self.num_beams, dim=1, largest=True, sorted=True) # next_scores torch.Size([bz, num_beams]) # next_tokens torch.Size([bz, num_beams]) next_batch_beam = list() for batch_idx in range(batch_size): next_sent_beam = list() for rank, (expert_id, expert_score) in enumerate( zip(next_experts[batch_idx], next_scores[batch_idx]) ): expert_id = expert_id.item() beam_id = expert_id // self.num_experts ex_id = expert_id % self.num_experts effective_beam_id = batch_idx*self.num_beams + beam_id next_sent_beam.append((expert_score, ex_id, effective_beam_id)) next_batch_beam.extend(next_sent_beam) import pdb;pdb.set_trace() beam_scores = beam_scores.new([x[0] for x in next_batch_beam]) beam_experts = expert_route[:,-1].new([x[1] for x in next_batch_beam]) beam_idx = expert_route[:,-1].new([x[2] for x in next_batch_beam]) pre_route = expert_route[beam_idx,:] expert_route = torch.cat([pre_route, beam_experts.unsqueeze(1)], dim=-1) print("next_scores_raw1:\n",next_scores_raw1) return beam_scores, expert_route, beam_idx def forward_expert_ffn(self, x, expert_select, current_scores): """ x_repeat : [bz*num_beams, 32,768] expert_select : [bz*num_beams] current_scores : [bz*num_beams, num_experts] / [bz, num_experts] """ # add_1228 l2_normalization # normalized_tensor = torch.nn.functional.normalize(current_scores, p=2, dim=0) # L2 Normalization torch.Size([bz, topk]) # tmp_prob = normalized_tensor.unsqueeze(-1).unsqueeze(-1) import pdb;pdb.set_trace() outputs = list() for i in range(self.num_experts): output_x = self.experts[i].forward(x) outputs.append(output_x.unsqueeze(1)) candidate_output = torch.cat(outputs, dim=1) expert_select_matrix = F.one_hot(expert_select, self.num_experts) if self.weight_type == 'ffn_prob': tmp_prob = current_scores * expert_select_matrix candidate_output = candidate_output * tmp_prob.unsqueeze(-1).unsqueeze(-1) else: candidate_output = candidate_output * expert_select_matrix.unsqueeze(-1).unsqueeze(-1) import pdb;pdb.set_trace() output = torch.sum(candidate_output, dim=1) return output # torch.Size([bz*num_beams, 32, 768]) def forward_pre_route(self, x, beam_scores, expert_route, use_log=True): import pdb;pdb.set_trace() current_scores = self.forward_gate(x) # [bz, num_beams] / [bz*num_beams, num_beams] importance_loss = self._importance_auxiliary_loss(current_scores) if use_log: current_scores_log = torch.log(current_scores) # 取log之后可以直接相加 else: current_scores_log = current_scores batch_size, num_tokens = x.shape[0], x.shape[1] beam_scores, expert_route, beam_idx = self.beam_search(current_scores_log, beam_scores, expert_route, batch_size) current_expert_select = expert_route[:,-1] import pdb;pdb.set_trace() if self.layer_judge=='first': # expand first dim to batch_size * num_beams replicated_tensor = x.unsqueeze(1).expand(batch_size, self.num_beams, num_tokens, self.hidden_size) x = replicated_tensor.contiguous().view(-1, num_tokens, self.hidden_size) # [bz*num_beams, 32,768] current_scores_t = current_scores.unsqueeze(1).expand(batch_size, self.num_beams, self.num_experts) current_scores = current_scores_t.contiguous().view(-1, self.num_experts) # [bz*num_beams, num_experts] input_x = x[beam_idx] candidate_output = self.forward_expert_ffn(input_x, current_expert_select, current_scores) # [bz*num_beams, 32,768] import pdb;pdb.set_trace() return candidate_output, beam_scores, expert_route, beam_idx, importance_loss def forward_post_route(self, x, beam_scores, expert_route, use_log=True): attention_mask = torch.ones(x.shape[0], x.shape[1]).to(x.device) x_masked = x * attention_mask.unsqueeze(-1) # torch.Size([bz, 32, 768]) def forward_expert(input_x, expert_idx): output_x = self.experts[expert_idx].forward(input_x) return output_x outputs = list() logits_gate_lst = list() for expert_idx in range(self.num_experts): output_x = forward_expert(x_masked, expert_idx) # output_x_aver = output_x.sum(1) / attention_mask.unsqueeze(-1).sum(1) # torch.Size([bz*num_beam, 768]) output_x_aver = torch.mean(output_x, dim=1) # gate_score = self.gates[expert_idx](output_x_aver) gate_score = self.gate(output_x_aver) logits_gate_lst.append(gate_score) outputs.append(output_x.unsqueeze(0)) candidate_output_raw = torch.cat(outputs) # torch.Size([num_expert, bz*num_beam, 32, 768]) logits_gate = torch.cat(logits_gate_lst,dim=1)# torch.Size([bz*num_beam, num_expert]) current_scores = F.softmax(logits_gate, dim=-1) # torch.Size([bz*num_beam, num_experts]) if use_log: current_scores_log = torch.log(current_scores) # 取log之后可以直接相加 else: current_scores_log = current_scores # importance loss importance_loss = self._importance_auxiliary_loss(current_scores) batch_size, num_tokens = x.shape[0], x.shape[1] # bz*num_beam import pdb; pdb.set_trace() if self.route_method == 'post-route': beam_scores, expert_route, beam_idx = self.beam_search(current_scores_log, beam_scores, expert_route, batch_size) elif self.route_method == 'post-route-dp': beam_scores, expert_route, beam_idx = self.dp_search(current_scores_log, beam_scores, expert_route, batch_size) # beam_scores torch.Size([bz*num_beam]) # expert_route torch.Size([bz*num_beam, layer_n]) current_select_expert = expert_route[:,-1] # current_select_expert torch.Size([bz*num_beam, 1]) # import pdb; pdb.set_trace() if self.layer_judge == 'first': replicated_tensor = candidate_output_raw.unsqueeze(2).expand(self.num_experts, batch_size, self.num_beams, num_tokens, self.hidden_size) candidate_output_raw = replicated_tensor.contiguous().view(self.num_experts, -1, num_tokens, self.hidden_size) # [bz*num_beams, 32,768] current_scores_t = current_scores.unsqueeze(1).expand(batch_size, self.num_beams, self.num_experts) current_scores = current_scores_t.contiguous().view(-1, self.num_experts) # [bz*num_beams, num_experts] candidate_output = candidate_output_raw.permute(1, 0, 2, 3)[beam_idx] # torch.Size([8, 2, 32, 768]) expert_select_matrix = F.one_hot(current_select_expert, self.num_experts) if self.weight_type == 'ffn_prob': tmp_prob = current_scores[beam_idx] * expert_select_matrix output = candidate_output * tmp_prob.unsqueeze(-1).unsqueeze(-1) else: output = candidate_output * expert_select_matrix.unsqueeze(-1).unsqueeze(-1) final_output = torch.sum(output, dim=1) import pdb; pdb.set_trace() print("current_scores:\n",current_scores) return final_output, beam_scores, expert_route, beam_idx, importance_loss def forward(self, x, attention_mask, beam_scores, expert_route, use_log=True): """ if first_layer: x [bz, 32, 768] else: x [bz*num_beams, 32, 768] """ if self.route_method == 'pre-route': candidate_output, beam_scores, expert_route, beam_idx, importance_loss = self.forward_pre_route(x, beam_scores, expert_route, use_log=True) elif self.route_method in ['post-route', 'post-route-dp']: candidate_output, beam_scores, expert_route, beam_idx, importance_loss = self.forward_post_route(x, beam_scores, expert_route, use_log=True) return candidate_output, beam_scores, expert_route, beam_idx, importance_loss if __name__ == '__main__': import sys sys.path.append("/mnt/pfs-guan-ssai/nlu/wanghanzi/multimodal/PromptMoE") from minigpt4.models.QformerRouteMoE import BertConfig from minigpt4.models.QformerRouteMoE import FeedForward from minigpt4.models.moe.utils import ( use_experts, moe_layer_judge, ) vision_width = 1408 cross_attention_freq = 2 num_query_token = 32 # init_QformerMoE config = BertConfig.from_pretrained("/mnt/pfs-guan-ssai/nlu/wanghanzi/models/bert-base-uncased") config.encoder_width = vision_width # insert cross-attention layer every other block config.add_cross_attention = True config.cross_attention_freq = cross_attention_freq config.query_length = num_query_token config.moebert_expert_num = 2 config.moebert_num_beams = 2 config.moebert_route_method = 'gate-sentence' config.moe_topk = 2 config.use_balance_loss = False config.moe_weight_type = 'l2_norm' batch_size = 4 x = torch.randn(batch_size, 32, 768) beam_scores, expert_route = None, None x1 = x x2 = x x3 = x beam_scores1, expert_route1 = None, None beam_scores2, expert_route2 = None, None for layer_num in [6, 8, 10]: layer_judge = moe_layer_judge(layer_num) ffn = FeedForward(config) # experts = RouteMoELayer( # hidden_size=768, # expert=ffn, # num_experts=config.moebert_expert_num, # num_beams=config.moebert_num_beams, # layer_judge = layer_judge, # route_method = "pre-route", # weight_type="no_ffn_prob" # ) # layer_output = experts(x, None, beam_scores, expert_route) # hidden_states1, beam_scores, expert_route, beam_idx, importance_loss = layer_output # print(beam_scores) # print(expert_route) # print(beam_idx) # print(importance_loss) # x = hidden_states1 # experts_post = RouteMoELayer( # hidden_size=768, # expert=ffn, # num_experts=config.moebert_expert_num, # num_beams=config.moebert_num_beams, # layer_judge = layer_judge, # route_method = "post-route", # weight_type="ffn_prob" # ) # layer_output = experts_post(x1, None, beam_scores1, expert_route1, False) # hidden_states2, beam_scores1, expert_route1, beam_idx, importance_loss = layer_output # print(beam_scores1) # print(expert_route1) # print(beam_idx) # print(importance_loss) # x1 = hidden_states2 experts_post = RouteMoELayer( hidden_size=768, expert=ffn, num_experts=config.moebert_expert_num, num_beams=config.moebert_num_beams, layer_judge = layer_judge, route_method = "post-route-dp", weight_type="ffn_prob" ) layer_output = experts_post(x2, None, beam_scores2, expert_route2, False) hidden_states3, beam_scores2, expert_route2, beam_idx2, importance_loss2 = layer_output print(beam_scores2) print(expert_route2) print(beam_idx2) print(importance_loss2) x2 = hidden_states3 # gate = nn.Linear(768, config.moebert_expert_num, bias=False).float() # experts_moe = MoELayer( # hidden_size=config.hidden_size, # expert=ffn, # gate=gate, # num_experts=config.moebert_expert_num, # route_method=config.moebert_route_method, # topk=config.moe_topk, # use_balance_loss=config.use_balance_loss, # weight_type=config.moe_weight_type, # ) # attn_mask = torch.ones([batch_size, 32]) # layer_output = experts_moe(x3, attn_mask) # hidden_states4, select_prob_gate, gate_load,_ = layer_output # print(select_prob_gate) # print(gate_load) # x3 = hidden_states4 print("------------------------------------") import pdb; pdb.set_trace() def forward_post_route_backup(self, x, beam_scores, expert_route, use_log=True): attention_mask = torch.ones(x.shape[0], x.shape[1]).to(x.device) x_masked = x * attention_mask.unsqueeze(-1) # torch.Size([bz, 32, 768]) def forward_expert(input_x, expert_idx): output_x = self.experts[expert_idx].forward(input_x) return output_x outputs = list() logits_gate_lst = list() for expert_idx in range(self.num_experts): output_x = forward_expert(x_masked, expert_idx) outputs.append(output_x.unsqueeze(0)) # output_x_aver = output_x.sum(1) / attention_mask.unsqueeze(-1).sum(1) # torch.Size([bz*num_beam, 768]) # gate_score = self.gates[expert_idx](output_x_aver) output_x_aver = torch.mean(output_x, dim=1) gate_score = self.gate(output_x_aver) logits_gate_lst.append(gate_score) candidate_output = torch.cat(outputs) # torch.Size([num_expert, bz*num_beam, 32, 768]) logits_gate = torch.cat(logits_gate_lst,dim=1)# torch.Size([bz*num_beam, num_expert]) current_scores = F.softmax(logits_gate, dim=-1) # torch.Size([bz*num_beam, num_experts]) if use_log: current_scores_log = torch.log(current_scores) # 取log之后可以直接相加 else: current_scores_log = current_scores # importance loss importance_loss = self._importance_auxiliary_loss(current_scores) batch_size = x.shape[0] # bz*num_beam beam_scores, expert_route, beam_idx = self.beam_search(current_scores_log, beam_scores, expert_route, batch_size) # beam_scores torch.Size([bz*num_beam]) # expert_route torch.Size([bz*num_beam, layer_n]) current_select_expert = expert_route[:,-1] # current_select_expert torch.Size([bz*num_beam, 1]) output = list() for i in range(beam_idx.shape[0]): b_idx = beam_idx[i] ex_idx = current_select_expert[i] ex_out = candidate_output[ex_idx, b_idx, :,:] if self.weight_type == 'ffn_prob': prob = current_scores[b_idx, ex_idx] ex_out = ex_out*prob output.append(ex_out.unsqueeze(0)) final_output = torch.concat(output, dim=0) # import pdb;pdb.set_trace() return final_output, beam_scores, expert_route, beam_idx, importance_loss