""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import argparse import os import random import numpy as np import torch import torch.backends.cudnn as cudnn # import wandb import sys sys.path.append("/mnt/pfs-guan-ssai/nlu/wanghanzi/multimodal/PromptMoE") import minigpt4.tasks as tasks from minigpt4.common.config import Config from minigpt4.common.dist_utils import get_rank from minigpt4.common.logger import setup_logger from minigpt4.common.registry import registry from minigpt4.common.utils import now # imports modules for registration from minigpt4.datasets.builders import * from minigpt4.models import * from minigpt4.processors import * from minigpt4.runners import * from minigpt4.tasks import * def parse_args(): parser = argparse.ArgumentParser(description="Demo") # parser.add_argument("-f", help="jupyter notebook") parser.add_argument( "--cfg-path", default="/mnt/pfs-guan-ssai/nlu/wanghanzi/multimodal/PromptMoE/minigpt4/projects/qformer_moe_post_vicuna/train/mix_qformer_moe_post_blip2_vicuna7b_data_balance_finetuned.yaml", help="path to configuration file.") parser.add_argument( "--gpu-id", type=int, default=5, help="specify the gpu to load the model.") parser.add_argument( "--options", nargs="+", help="override some settings in the used config, the key-value pair " "in xxx=yyy format will be merged into config file (deprecate), " "change to --cfg-options instead.", ) args = parser.parse_args() return args def setup_seeds(config): seed = config.run_cfg.seed + get_rank() random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) cudnn.benchmark = False cudnn.deterministic = True def get_runner_class(cfg): """ Get runner class from config. Default to epoch-based runner. """ runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base")) return runner_cls # Test About Building Task # build config device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu") cfg = Config(parse_args()) setup_seeds(cfg) print(cfg._convert_node_to_json(cfg.config)) setup_logger() cfg.pretty_print() task = tasks.setup_task(cfg) datasets = task.build_datasets(cfg) job_id = now() # model = task.build_model(cfg) # model = None task.build_tensorboard(cfg) runner = get_runner_class(cfg)( cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets ) data_loader = runner.train_loader data_loader = runner.dataloaders['val']