## Evaluation Instruction for MiniGPT-v2 ### Data preparation Images download Image source | Download path --- | :---: OKVQA| annotations    images gqa | annotations    images hateful meme | images and annotations iconqa | images and annotation vizwiz | images and annotation RefCOCO | annotations RefCOCO+ | annotations RefCOCOg | annotations ### Evaluation dataset structure ``` ${MINIGPTv2_EVALUATION_DATASET} ├── gqa │ └── test_balanced_questions.json │ ├── testdev_balanced_questions.json │ ├── gqa_images ├── hateful_meme │ └── hm_images │ ├── dev.jsonl ├── iconvqa │ └── iconvqa_images │ ├── choose_text_val.json ├── vizwiz │ └── vizwiz_images │ ├── val.json ├── vsr │ └── vsr_images ├── okvqa │ ├── okvqa_test_split.json │ ├── mscoco_val2014_annotations_clean.json │ ├── OpenEnded_mscoco_val2014_questions_clean.json ├── refcoco │ └── instances.json │ ├── refs(google).p │ ├── refs(unc).p ├── refcoco+ │ └── instances.json │ ├── refs(unc).p ├── refercocog │ └── instances.json │ ├── refs(google).p │ ├── refs(und).p ... ``` ### environment setup ``` export PYTHONPATH=$PYTHONPATH:/path/to/directory/of/MiniGPT-4 ``` ### start evalauting RefCOCO, RefCOCO+, RefCOCOg port=port_number cfg_path=/path/to/eval_configs/minigptv2_eval.yaml eval_file_path=/path/to/eval/image/path save_path=/path/to/save/path ckpt=/path/to/evaluation/checkpoint split=/evaluation/data/split/type # e.g. val, testA, testB, test dataset=/data/type #refcoco, refcoco+, refcocog ``` torchrun --master-port ${port} --nproc_per_node 1 eval_ref.py \ --cfg-path ${cfg_path} --img_path ${IMG_PATH} --eval_file_path ${eval_file_path} --save_path ${save_path} \ --ckpt ${ckpt} --split ${split} --dataset ${dataset} --lora_r 64 --lora_alpha 16 \ --batch_size 10 --max_new_tokens 20 --resample ``` ### start evaluating visual question answering port=port_number cfg_path=/path/to/eval_configs/minigptv2_eval.yaml eval_file_path=/path/to/eval/image/path save_path=/path/to/save/path ckpt=/path/to/evaluation/checkpoint split=/evaluation/data/split/type # e.g. val,test dataset=/data/type # vqa data types: okvqa, vizwiz, iconvqa, gqa, vsr, hm ``` torchrun --master-port ${port} --nproc_per_node 1 eval_ref.py \ --cfg-path ${cfg_path} --img_path ${IMG_PATH} --eval_file_path ${eval_file_path} --save_path ${save_path} \ --ckpt ${ckpt} --split ${split} --dataset ${dataset} --lora_r 64 --lora_alpha 16 \ --batch_size 10 --max_new_tokens 20 --resample ```