## Transfer Learning Experiments We use the following training/prediction scripts for the classifier, zero-shot, and contrastive experiments in Table 3. ```bash ## Training python transfer_experiments/train.py --aokvqa-dir ${AOKVQA_DIR} --vocab ${AOKVQA_DIR}/large_vocab_train.csv --log-dir ${LOG_DIR} --backbone clip --clip-model-type ViT-B/32 --train-features ${FEATURES_DIR}/clip-ViT-B-32_train.pt --val-features ${FEATURES_DIR}/clip-ViT-B-32_val.pt --inputs question # OR --inputs image # OR --inputs question image # OR --backbone resnet --train-features ${FEATURES_DIR}/resnet_train.pt --val-features ${FEATURES_DIR}/resnet_val.pt --inputs image # OR --backbone bert --train-features ${FEATURES_DIR}/bert_train.pt --val-features ${FEATURES_DIR}/bert_val.pt --inputs question --objective classifier # OR --objective contrastive --vocab-features ${FEATURE_DIR}/clip-ViT-B-32_large_vocab.pt ``` You can make predictions for CLIP zero-shot or from a classifier/contrastive checkpoint trained above. ```bash ## Predicting python transfer_experiments/predict.py --aokvqa-dir ${AOKVQA_DIR} --out ${PREDS_DIR}/clip-classifier_val-mc.json --split val # or test --features ${FEATURE_DIR}/clip-ViT-B-32_val.pt # adjust for backbone and eval split --ckpt path/to/model.ckpt # OR --zero-shot --clip-model-type ViT-B/32 --inputs question # OR --inputs image # OR --inputs question image --mc # Multiple-choice. Exclude for direct-answer. # IF classifier OR direct-answer --vocab ${AOKVQA_DIR}/large_vocab_train.csv # IF contrastive/zero-shot AND direct-answer --vocab-features ${FEATURES_DIR}/clip-ViT-B-32_large_vocab.pt ```