## Evaluation Instruction for MiniGPT-v2
### Data preparation
Images download
Image source | Download path
--- | :---:
OKVQA| annotations images
gqa | annotations images
hateful meme | images and annotations
iconqa | images and annotation
vizwiz | images and annotation
RefCOCO | annotations
RefCOCO+ | annotations
RefCOCOg | annotations
### Evaluation dataset structure
### environment setup
```
export PYTHONPATH=$PYTHONPATH:/path/to/directory/of/MiniGPT-4
```
### start evalauting RefCOCO, RefCOCO+, RefCOCOg
port=port_number
cfg_path=/path/to/eval_configs/minigptv2_eval.yaml
eval_file_path=/path/to/eval/image/path
save_path=/path/to/save/path
ckpt=/path/to/evaluation/checkpoint
split=/evaluation/data/split/type # e.g. val, testA, testB, test
dataset=/data/type #refcoco, refcoco+, refcocog
```
torchrun --master-port ${port} --nproc_per_node 1 eval_ref.py \
--cfg-path ${cfg_path} --img_path ${IMG_PATH} --eval_file_path ${eval_file_path} --save_path ${save_path} \
--ckpt ${ckpt} --split ${split} --dataset ${dataset} --lora_r 64 --lora_alpha 16 \
--batch_size 10 --max_new_tokens 20 --resample
```
### start evaluating visual question answering
port=port_number
cfg_path=/path/to/eval_configs/minigptv2_eval.yaml
eval_file_path=/path/to/eval/image/path
save_path=/path/to/save/path
ckpt=/path/to/evaluation/checkpoint
split=/evaluation/data/split/type # e.g. val,test
dataset=/data/type # vqa data types: okvqa, vizwiz, iconvqa, gqa, vsr, hm
```
torchrun --master-port ${port} --nproc_per_node 1 eval_ref.py \
--cfg-path ${cfg_path} --img_path ${IMG_PATH} --eval_file_path ${eval_file_path} --save_path ${save_path} \
--ckpt ${ckpt} --split ${split} --dataset ${dataset} --lora_r 64 --lora_alpha 16 \
--batch_size 10 --max_new_tokens 20 --resample
```