model: arch: minigpt4 model_type: pretrain_llama2 max_txt_len: 160 end_sym: "" low_resource: True prompt_template: '[INST] {} [/INST] ' ckpt: 'please set this value to the path of pretrained checkpoint' datasets: coco_vqa: # not used type: eval vis_processor: eval: name: "blip2_image_eval" image_size: 336 text_processor: eval: name: "blip_caption" run: task: scienceqa # optimization-specific batch_size_train: 16 batch_size_eval: 32 num_workers: 8 # inference-specific num_ans_candidates: 5 max_len: 10 min_len: 1 num_beams: 5 inference_method: "generate" prompt: "Question: {} Short answer:" seed: 42 output_dir: "results" evaluate: True test_splits: ["val"] # distribution-specific device: "cuda" world_size: 1 dist_url: "env://" distributed: True