mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-03 01:20:45 +00:00
172 lines
6.3 KiB
Python
172 lines
6.3 KiB
Python
import argparse
|
|
import os
|
|
import random
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.backends.cudnn as cudnn
|
|
import gradio as gr
|
|
|
|
from transformers import StoppingCriteriaList
|
|
|
|
from minigpt4.common.config import Config
|
|
from minigpt4.common.dist_utils import get_rank
|
|
from minigpt4.common.registry import registry
|
|
from minigpt4.conversation.conversation import Chat, CONV_VISION_Vicuna0, CONV_VISION_LLama2, StoppingCriteriaSub
|
|
|
|
# imports modules for registration
|
|
from minigpt4.datasets.builders import *
|
|
from minigpt4.models import *
|
|
from minigpt4.processors import *
|
|
from minigpt4.runners import *
|
|
from minigpt4.tasks import *
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description="Demo")
|
|
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
|
|
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
|
|
parser.add_argument(
|
|
"--options",
|
|
nargs="+",
|
|
help="override some settings in the used config, the key-value pair "
|
|
"in xxx=yyy format will be merged into config file (deprecate), "
|
|
"change to --cfg-options instead.",
|
|
)
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def setup_seeds(config):
|
|
seed = config.run_cfg.seed + get_rank()
|
|
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
|
|
cudnn.benchmark = False
|
|
cudnn.deterministic = True
|
|
|
|
|
|
# ========================================
|
|
# Model Initialization
|
|
# ========================================
|
|
|
|
conv_dict = {'pretrain_vicuna0': CONV_VISION_Vicuna0,
|
|
'pretrain_llama2': CONV_VISION_LLama2}
|
|
|
|
print('Initializing Chat')
|
|
args = parse_args()
|
|
cfg = Config(args)
|
|
|
|
model_config = cfg.model_cfg
|
|
model_config.device_8bit = args.gpu_id
|
|
model_cls = registry.get_model_class(model_config.arch)
|
|
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
|
|
|
|
CONV_VISION = conv_dict[model_config.model_type]
|
|
|
|
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
|
|
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
|
|
|
|
stop_words_ids = [[835], [2277, 29937]]
|
|
stop_words_ids = [torch.tensor(ids).to(device='cuda:{}'.format(args.gpu_id)) for ids in stop_words_ids]
|
|
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
|
|
|
|
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id), stopping_criteria=stopping_criteria)
|
|
print('Initialization Finished')
|
|
|
|
|
|
# ========================================
|
|
# Gradio Setting
|
|
# ========================================
|
|
|
|
|
|
def gradio_reset(chat_state, img_list):
|
|
if chat_state is not None:
|
|
chat_state.messages = []
|
|
if img_list is not None:
|
|
img_list = []
|
|
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
|
|
|
|
|
|
def upload_img(gr_img, text_input, chat_state):
|
|
if gr_img is None:
|
|
return None, None, gr.update(interactive=True), chat_state, None
|
|
chat_state = CONV_VISION.copy()
|
|
img_list = []
|
|
llm_message = chat.upload_img(gr_img, chat_state, img_list)
|
|
chat.encode_img(img_list)
|
|
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
|
|
|
|
|
|
def gradio_ask(user_message, chatbot, chat_state):
|
|
if len(user_message) == 0:
|
|
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
|
|
chat.ask(user_message, chat_state)
|
|
chatbot = chatbot + [[user_message, None]]
|
|
return '', chatbot, chat_state
|
|
|
|
|
|
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
|
|
llm_message = chat.answer(conv=chat_state,
|
|
img_list=img_list,
|
|
num_beams=num_beams,
|
|
temperature=temperature,
|
|
max_new_tokens=300,
|
|
max_length=2000)[0]
|
|
chatbot[-1][1] = llm_message
|
|
return chatbot, chat_state, img_list
|
|
|
|
|
|
title = """<h1 align="center">Demo of MiniGPT-4</h1>"""
|
|
description = """<h3>This is the demo of MiniGPT-4. Upload your images and start chatting!</h3>"""
|
|
article = """<p><a href='https://minigpt-4.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p><a href='https://github.com/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p><a href='https://raw.githubusercontent.com/Vision-CAIR/MiniGPT-4/main/MiniGPT_4.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></p>
|
|
"""
|
|
|
|
#TODO show examples below
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown(title)
|
|
gr.Markdown(description)
|
|
gr.Markdown(article)
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
image = gr.Image(type="pil")
|
|
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
|
|
clear = gr.Button("Restart")
|
|
|
|
num_beams = gr.Slider(
|
|
minimum=1,
|
|
maximum=10,
|
|
value=1,
|
|
step=1,
|
|
interactive=True,
|
|
label="beam search numbers)",
|
|
)
|
|
|
|
temperature = gr.Slider(
|
|
minimum=0.1,
|
|
maximum=2.0,
|
|
value=1.0,
|
|
step=0.1,
|
|
interactive=True,
|
|
label="Temperature",
|
|
)
|
|
|
|
with gr.Column(scale=2):
|
|
chat_state = gr.State()
|
|
img_list = gr.State()
|
|
chatbot = gr.Chatbot(label='MiniGPT-4')
|
|
text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False)
|
|
|
|
upload_button.click(upload_img, [image, text_input, chat_state], [image, text_input, upload_button, chat_state, img_list])
|
|
|
|
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
|
|
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
|
|
)
|
|
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list], queue=False)
|
|
|
|
demo.launch(share=True, enable_queue=True)
|