mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-03 01:20:45 +00:00
648 lines
23 KiB
Python
648 lines
23 KiB
Python
import argparse
|
|
import os
|
|
import random
|
|
from collections import defaultdict
|
|
|
|
import cv2
|
|
import re
|
|
|
|
import numpy as np
|
|
from PIL import Image
|
|
import torch
|
|
import html
|
|
import gradio as gr
|
|
|
|
import torchvision.transforms as T
|
|
import torch.backends.cudnn as cudnn
|
|
|
|
from minigpt4.common.config import Config
|
|
|
|
from minigpt4.common.registry import registry
|
|
from minigpt4.conversation.conversation import Conversation, SeparatorStyle, Chat
|
|
|
|
# imports modules for registration
|
|
from minigpt4.datasets.builders import *
|
|
from minigpt4.models import *
|
|
from minigpt4.processors import *
|
|
from minigpt4.runners import *
|
|
from minigpt4.tasks import *
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description="Demo")
|
|
parser.add_argument("--cfg-path", default='eval_configs/minigptv2_eval.yaml',
|
|
help="path to configuration file.")
|
|
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
|
|
parser.add_argument(
|
|
"--options",
|
|
nargs="+",
|
|
help="override some settings in the used config, the key-value pair "
|
|
"in xxx=yyy format will be merged into config file (deprecate), "
|
|
"change to --cfg-options instead.",
|
|
)
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
random.seed(42)
|
|
np.random.seed(42)
|
|
torch.manual_seed(42)
|
|
|
|
cudnn.benchmark = False
|
|
cudnn.deterministic = True
|
|
|
|
print('Initializing Chat')
|
|
args = parse_args()
|
|
cfg = Config(args)
|
|
|
|
device = 'cuda:{}'.format(args.gpu_id)
|
|
|
|
model_config = cfg.model_cfg
|
|
model_config.device_8bit = args.gpu_id
|
|
model_cls = registry.get_model_class(model_config.arch)
|
|
model = model_cls.from_config(model_config).to(device)
|
|
bounding_box_size = 100
|
|
|
|
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
|
|
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
|
|
|
|
model = model.eval()
|
|
|
|
CONV_VISION = Conversation(
|
|
system="",
|
|
roles=(r"<s>[INST] ", r" [/INST]"),
|
|
messages=[],
|
|
offset=2,
|
|
sep_style=SeparatorStyle.SINGLE,
|
|
sep="",
|
|
)
|
|
|
|
|
|
def extract_substrings(string):
|
|
# first check if there is no-finished bracket
|
|
index = string.rfind('}')
|
|
if index != -1:
|
|
string = string[:index + 1]
|
|
|
|
pattern = r'<p>(.*?)\}(?!<)'
|
|
matches = re.findall(pattern, string)
|
|
substrings = [match for match in matches]
|
|
|
|
return substrings
|
|
|
|
|
|
def is_overlapping(rect1, rect2):
|
|
x1, y1, x2, y2 = rect1
|
|
x3, y3, x4, y4 = rect2
|
|
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
|
|
|
|
|
|
def computeIoU(bbox1, bbox2):
|
|
x1, y1, x2, y2 = bbox1
|
|
x3, y3, x4, y4 = bbox2
|
|
intersection_x1 = max(x1, x3)
|
|
intersection_y1 = max(y1, y3)
|
|
intersection_x2 = min(x2, x4)
|
|
intersection_y2 = min(y2, y4)
|
|
intersection_area = max(0, intersection_x2 - intersection_x1 + 1) * max(0, intersection_y2 - intersection_y1 + 1)
|
|
bbox1_area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
|
bbox2_area = (x4 - x3 + 1) * (y4 - y3 + 1)
|
|
union_area = bbox1_area + bbox2_area - intersection_area
|
|
iou = intersection_area / union_area
|
|
return iou
|
|
|
|
|
|
def save_tmp_img(visual_img):
|
|
file_name = "".join([str(random.randint(0, 9)) for _ in range(5)]) + ".jpg"
|
|
file_path = "/tmp/gradio" + file_name
|
|
visual_img.save(file_path)
|
|
return file_path
|
|
|
|
|
|
def mask2bbox(mask):
|
|
if mask is None:
|
|
return ''
|
|
mask = mask.resize([100, 100], resample=Image.NEAREST)
|
|
mask = np.array(mask)[:, :, 0]
|
|
|
|
rows = np.any(mask, axis=1)
|
|
cols = np.any(mask, axis=0)
|
|
|
|
if rows.sum():
|
|
# Get the top, bottom, left, and right boundaries
|
|
rmin, rmax = np.where(rows)[0][[0, -1]]
|
|
cmin, cmax = np.where(cols)[0][[0, -1]]
|
|
bbox = '{{<{}><{}><{}><{}>}}'.format(cmin, rmin, cmax, rmax)
|
|
else:
|
|
bbox = ''
|
|
|
|
return bbox
|
|
|
|
|
|
def escape_markdown(text):
|
|
# List of Markdown special characters that need to be escaped
|
|
md_chars = ['<', '>']
|
|
|
|
# Escape each special character
|
|
for char in md_chars:
|
|
text = text.replace(char, '\\' + char)
|
|
|
|
return text
|
|
|
|
|
|
def reverse_escape(text):
|
|
md_chars = ['\\<', '\\>']
|
|
|
|
for char in md_chars:
|
|
text = text.replace(char, char[1:])
|
|
|
|
return text
|
|
|
|
|
|
colors = [
|
|
(255, 0, 0),
|
|
(0, 255, 0),
|
|
(0, 0, 255),
|
|
(210, 210, 0),
|
|
(255, 0, 255),
|
|
(0, 255, 255),
|
|
(114, 128, 250),
|
|
(0, 165, 255),
|
|
(0, 128, 0),
|
|
(144, 238, 144),
|
|
(238, 238, 175),
|
|
(255, 191, 0),
|
|
(0, 128, 0),
|
|
(226, 43, 138),
|
|
(255, 0, 255),
|
|
(0, 215, 255),
|
|
]
|
|
|
|
color_map = {
|
|
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for
|
|
color_id, color in enumerate(colors)
|
|
}
|
|
|
|
used_colors = colors
|
|
|
|
|
|
def visualize_all_bbox_together(image, generation):
|
|
if image is None:
|
|
return None, ''
|
|
|
|
generation = html.unescape(generation)
|
|
|
|
image_width, image_height = image.size
|
|
image = image.resize([500, int(500 / image_width * image_height)])
|
|
image_width, image_height = image.size
|
|
|
|
string_list = extract_substrings(generation)
|
|
if string_list: # it is grounding or detection
|
|
mode = 'all'
|
|
entities = defaultdict(list)
|
|
i = 0
|
|
j = 0
|
|
for string in string_list:
|
|
try:
|
|
obj, string = string.split('</p>')
|
|
except ValueError:
|
|
print('wrong string: ', string)
|
|
continue
|
|
bbox_list = string.split('<delim>')
|
|
flag = False
|
|
for bbox_string in bbox_list:
|
|
integers = re.findall(r'-?\d+', bbox_string)
|
|
if len(integers) == 4:
|
|
x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3])
|
|
left = x0 / bounding_box_size * image_width
|
|
bottom = y0 / bounding_box_size * image_height
|
|
right = x1 / bounding_box_size * image_width
|
|
top = y1 / bounding_box_size * image_height
|
|
|
|
entities[obj].append([left, bottom, right, top])
|
|
|
|
j += 1
|
|
flag = True
|
|
if flag:
|
|
i += 1
|
|
else:
|
|
integers = re.findall(r'-?\d+', generation)
|
|
|
|
if len(integers) == 4: # it is refer
|
|
mode = 'single'
|
|
|
|
entities = list()
|
|
x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3])
|
|
left = x0 / bounding_box_size * image_width
|
|
bottom = y0 / bounding_box_size * image_height
|
|
right = x1 / bounding_box_size * image_width
|
|
top = y1 / bounding_box_size * image_height
|
|
entities.append([left, bottom, right, top])
|
|
else:
|
|
# don't detect any valid bbox to visualize
|
|
return None, ''
|
|
|
|
if len(entities) == 0:
|
|
return None, ''
|
|
|
|
if isinstance(image, Image.Image):
|
|
image_h = image.height
|
|
image_w = image.width
|
|
image = np.array(image)
|
|
|
|
elif isinstance(image, str):
|
|
if os.path.exists(image):
|
|
pil_img = Image.open(image).convert("RGB")
|
|
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
|
image_h = pil_img.height
|
|
image_w = pil_img.width
|
|
else:
|
|
raise ValueError(f"invaild image path, {image}")
|
|
elif isinstance(image, torch.Tensor):
|
|
|
|
image_tensor = image.cpu()
|
|
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
|
|
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
|
|
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
|
|
pil_img = T.ToPILImage()(image_tensor)
|
|
image_h = pil_img.height
|
|
image_w = pil_img.width
|
|
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
|
else:
|
|
raise ValueError(f"invaild image format, {type(image)} for {image}")
|
|
|
|
indices = list(range(len(entities)))
|
|
|
|
new_image = image.copy()
|
|
|
|
previous_bboxes = []
|
|
# size of text
|
|
text_size = 0.5
|
|
# thickness of text
|
|
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
|
|
box_line = 2
|
|
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
|
|
base_height = int(text_height * 0.675)
|
|
text_offset_original = text_height - base_height
|
|
text_spaces = 2
|
|
|
|
# num_bboxes = sum(len(x[-1]) for x in entities)
|
|
used_colors = colors # random.sample(colors, k=num_bboxes)
|
|
|
|
color_id = -1
|
|
for entity_idx, entity_name in enumerate(entities):
|
|
if mode == 'single' or mode == 'identify':
|
|
bboxes = entity_name
|
|
bboxes = [bboxes]
|
|
else:
|
|
bboxes = entities[entity_name]
|
|
color_id += 1
|
|
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
|
|
skip_flag = False
|
|
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm), int(y1_norm), int(x2_norm), int(y2_norm)
|
|
|
|
color = used_colors[entity_idx % len(used_colors)] # tuple(np.random.randint(0, 255, size=3).tolist())
|
|
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
|
|
|
|
if mode == 'all':
|
|
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
|
|
|
|
x1 = orig_x1 - l_o
|
|
y1 = orig_y1 - l_o
|
|
|
|
if y1 < text_height + text_offset_original + 2 * text_spaces:
|
|
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
|
|
x1 = orig_x1 + r_o
|
|
|
|
# add text background
|
|
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size,
|
|
text_line)
|
|
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (
|
|
text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
|
|
|
|
for prev_bbox in previous_bboxes:
|
|
if computeIoU((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']) > 0.95 and \
|
|
prev_bbox['phrase'] == entity_name:
|
|
skip_flag = True
|
|
break
|
|
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']):
|
|
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
|
|
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
|
|
y1 += (text_height + text_offset_original + 2 * text_spaces)
|
|
|
|
if text_bg_y2 >= image_h:
|
|
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
|
|
text_bg_y2 = image_h
|
|
y1 = image_h
|
|
break
|
|
if not skip_flag:
|
|
alpha = 0.5
|
|
for i in range(text_bg_y1, text_bg_y2):
|
|
for j in range(text_bg_x1, text_bg_x2):
|
|
if i < image_h and j < image_w:
|
|
if j < text_bg_x1 + 1.35 * c_width:
|
|
# original color
|
|
bg_color = color
|
|
else:
|
|
# white
|
|
bg_color = [255, 255, 255]
|
|
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(
|
|
np.uint8)
|
|
|
|
cv2.putText(
|
|
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces),
|
|
cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
|
|
)
|
|
|
|
previous_bboxes.append(
|
|
{'bbox': (text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), 'phrase': entity_name})
|
|
|
|
if mode == 'all':
|
|
def color_iterator(colors):
|
|
while True:
|
|
for color in colors:
|
|
yield color
|
|
|
|
color_gen = color_iterator(colors)
|
|
|
|
# Add colors to phrases and remove <p></p>
|
|
def colored_phrases(match):
|
|
phrase = match.group(1)
|
|
color = next(color_gen)
|
|
return f'<span style="color:rgb{color}">{phrase}</span>'
|
|
|
|
generation = re.sub(r'{<\d+><\d+><\d+><\d+>}|<delim>', '', generation)
|
|
generation_colored = re.sub(r'<p>(.*?)</p>', colored_phrases, generation)
|
|
else:
|
|
generation_colored = ''
|
|
|
|
pil_image = Image.fromarray(new_image)
|
|
return pil_image, generation_colored
|
|
|
|
|
|
def gradio_reset(chat_state, img_list):
|
|
if chat_state is not None:
|
|
chat_state.messages = []
|
|
if img_list is not None:
|
|
img_list = []
|
|
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Upload your image and chat',
|
|
interactive=True), chat_state, img_list
|
|
|
|
|
|
def image_upload_trigger(upload_flag, replace_flag, img_list):
|
|
# set the upload flag to true when receive a new image.
|
|
# if there is an old image (and old conversation), set the replace flag to true to reset the conv later.
|
|
upload_flag = 1
|
|
if img_list:
|
|
replace_flag = 1
|
|
return upload_flag, replace_flag
|
|
|
|
|
|
def example_trigger(text_input, image, upload_flag, replace_flag, img_list):
|
|
# set the upload flag to true when receive a new image.
|
|
# if there is an old image (and old conversation), set the replace flag to true to reset the conv later.
|
|
upload_flag = 1
|
|
if img_list or replace_flag == 1:
|
|
replace_flag = 1
|
|
|
|
return upload_flag, replace_flag
|
|
|
|
|
|
def gradio_ask(user_message, chatbot, chat_state, gr_img, img_list, upload_flag, replace_flag):
|
|
if len(user_message) == 0:
|
|
text_box_show = 'Input should not be empty!'
|
|
else:
|
|
text_box_show = ''
|
|
|
|
if isinstance(gr_img, dict):
|
|
gr_img, mask = gr_img['image'], gr_img['mask']
|
|
else:
|
|
mask = None
|
|
|
|
if '[identify]' in user_message:
|
|
# check if user provide bbox in the text input
|
|
integers = re.findall(r'-?\d+', user_message)
|
|
if len(integers) != 4: # no bbox in text
|
|
bbox = mask2bbox(mask)
|
|
user_message = user_message + bbox
|
|
|
|
if chat_state is None:
|
|
chat_state = CONV_VISION.copy()
|
|
|
|
if upload_flag:
|
|
if replace_flag:
|
|
chat_state = CONV_VISION.copy() # new image, reset everything
|
|
replace_flag = 0
|
|
chatbot = []
|
|
img_list = []
|
|
llm_message = chat.upload_img(gr_img, chat_state, img_list)
|
|
upload_flag = 0
|
|
|
|
chat.ask(user_message, chat_state)
|
|
|
|
chatbot = chatbot + [[user_message, None]]
|
|
|
|
if '[identify]' in user_message:
|
|
visual_img, _ = visualize_all_bbox_together(gr_img, user_message)
|
|
if visual_img is not None:
|
|
file_path = save_tmp_img(visual_img)
|
|
chatbot = chatbot + [[(file_path,), None]]
|
|
|
|
return text_box_show, chatbot, chat_state, img_list, upload_flag, replace_flag
|
|
|
|
|
|
def gradio_answer(chatbot, chat_state, img_list, temperature):
|
|
llm_message = chat.answer(conv=chat_state,
|
|
img_list=img_list,
|
|
temperature=temperature,
|
|
max_new_tokens=500,
|
|
max_length=2000)[0]
|
|
chatbot[-1][1] = llm_message
|
|
return chatbot, chat_state
|
|
|
|
|
|
def gradio_stream_answer(chatbot, chat_state, img_list, temperature):
|
|
if len(img_list) > 0:
|
|
if not isinstance(img_list[0], torch.Tensor):
|
|
chat.encode_img(img_list)
|
|
streamer = chat.stream_answer(conv=chat_state,
|
|
img_list=img_list,
|
|
temperature=temperature,
|
|
max_new_tokens=500,
|
|
max_length=2000)
|
|
output = ''
|
|
for new_output in streamer:
|
|
escapped = escape_markdown(new_output)
|
|
output += escapped
|
|
chatbot[-1][1] = output
|
|
yield chatbot, chat_state
|
|
chat_state.messages[-1][1] = '</s>'
|
|
return chatbot, chat_state
|
|
|
|
|
|
def gradio_visualize(chatbot, gr_img):
|
|
if isinstance(gr_img, dict):
|
|
gr_img, mask = gr_img['image'], gr_img['mask']
|
|
|
|
unescaped = reverse_escape(chatbot[-1][1])
|
|
visual_img, generation_color = visualize_all_bbox_together(gr_img, unescaped)
|
|
if visual_img is not None:
|
|
if len(generation_color):
|
|
chatbot[-1][1] = generation_color
|
|
file_path = save_tmp_img(visual_img)
|
|
chatbot = chatbot + [[None, (file_path,)]]
|
|
|
|
return chatbot
|
|
|
|
|
|
def gradio_taskselect(idx):
|
|
prompt_list = [
|
|
'',
|
|
'[grounding] describe this image in detail',
|
|
'[refer] ',
|
|
'[detection] ',
|
|
'[identify] what is this ',
|
|
'[vqa] '
|
|
]
|
|
instruct_list = [
|
|
'**Hint:** Type in whatever you want',
|
|
'**Hint:** Send the command to generate a grounded image description',
|
|
'**Hint:** Type in a phrase about an object in the image and send the command',
|
|
'**Hint:** Type in a caption or phrase, and see object locations in the image',
|
|
'**Hint:** Draw a bounding box on the uploaded image then send the command. Click the "clear" botton on the top right of the image before redraw',
|
|
'**Hint:** Send a question to get a short answer',
|
|
]
|
|
return prompt_list[idx], instruct_list[idx]
|
|
|
|
|
|
|
|
|
|
chat = Chat(model, vis_processor, device=device)
|
|
|
|
title = """<h1 align="center">MiniGPT-v2 Demo</h1>"""
|
|
description = 'Welcome to Our MiniGPT-v2 Chatbot Demo!'
|
|
# article = """<p><a href='https://minigpt-v2.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p><a href='https://github.com/Vision-CAIR/MiniGPT-4/blob/main/MiniGPTv2.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></p><p><a href='https://github.com/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/GitHub-Repo-blue'></a></p><p><a href='https://www.youtube.com/watch?v=atFCwV2hSY4'><img src='https://img.shields.io/badge/YouTube-Video-red'></a></p>"""
|
|
article = """<p><a href='https://minigpt-v2.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p>"""
|
|
|
|
introduction = '''
|
|
For Abilities Involving Visual Grounding:
|
|
1. Grounding: CLICK **Send** to generate a grounded image description.
|
|
2. Refer: Input a referring object and CLICK **Send**.
|
|
3. Detection: Write a caption or phrase, and CLICK **Send**.
|
|
4. Identify: Draw the bounding box on the uploaded image window and CLICK **Send** to generate the bounding box. (CLICK "clear" button before re-drawing next time).
|
|
5. VQA: Input a visual question and CLICK **Send**.
|
|
6. No Tag: Input whatever you want and CLICK **Send** without any tagging
|
|
|
|
You can also simply chat in free form!
|
|
'''
|
|
|
|
text_input = gr.Textbox(placeholder='Upload your image and chat', interactive=True, show_label=False, container=False,
|
|
scale=8)
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown(title)
|
|
# gr.Markdown(description)
|
|
gr.Markdown(article)
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=0.5):
|
|
image = gr.Image(type="pil", tool='sketch', brush_radius=20)
|
|
|
|
temperature = gr.Slider(
|
|
minimum=0.1,
|
|
maximum=1.5,
|
|
value=0.6,
|
|
step=0.1,
|
|
interactive=True,
|
|
label="Temperature",
|
|
)
|
|
|
|
clear = gr.Button("Restart")
|
|
|
|
gr.Markdown(introduction)
|
|
|
|
with gr.Column():
|
|
chat_state = gr.State(value=None)
|
|
img_list = gr.State(value=[])
|
|
chatbot = gr.Chatbot(label='MiniGPT-v2')
|
|
|
|
dataset = gr.Dataset(
|
|
components=[gr.Textbox(visible=False)],
|
|
samples=[['No Tag'], ['Grounding'], ['Refer'], ['Detection'], ['Identify'], ['VQA']],
|
|
type="index",
|
|
label='Task Shortcuts',
|
|
)
|
|
task_inst = gr.Markdown('**Hint:** Upload your image and chat')
|
|
with gr.Row():
|
|
text_input.render()
|
|
send = gr.Button("Send", variant='primary', size='sm', scale=1)
|
|
|
|
upload_flag = gr.State(value=0)
|
|
replace_flag = gr.State(value=0)
|
|
image.upload(image_upload_trigger, [upload_flag, replace_flag, img_list], [upload_flag, replace_flag])
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
gr.Examples(examples=[
|
|
["examples_v2/office.jpg", "[grounding] describe this image in detail", upload_flag, replace_flag,
|
|
img_list],
|
|
["examples_v2/sofa.jpg", "[detection] sofas", upload_flag, replace_flag, img_list],
|
|
["examples_v2/2000x1372_wmkn_0012149409555.jpg", "[refer] the world cup", upload_flag, replace_flag,
|
|
img_list],
|
|
["examples_v2/KFC-20-for-20-Nuggets.jpg", "[identify] what is this {<4><50><30><65>}", upload_flag,
|
|
replace_flag, img_list],
|
|
], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger,
|
|
outputs=[upload_flag, replace_flag])
|
|
with gr.Column():
|
|
gr.Examples(examples=[
|
|
["examples_v2/glip_test.jpg", "[vqa] where should I hide in this room when playing hide and seek",
|
|
upload_flag, replace_flag, img_list],
|
|
["examples_v2/float.png", "Please write a poem about the image", upload_flag, replace_flag, img_list],
|
|
["examples_v2/thief.png", "Is the weapon fateful", upload_flag, replace_flag, img_list],
|
|
["examples_v2/cockdial.png", "What might happen in this image in the next second", upload_flag,
|
|
replace_flag, img_list],
|
|
], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger,
|
|
outputs=[upload_flag, replace_flag])
|
|
|
|
dataset.click(
|
|
gradio_taskselect,
|
|
inputs=[dataset],
|
|
outputs=[text_input, task_inst],
|
|
show_progress="hidden",
|
|
postprocess=False,
|
|
queue=False,
|
|
)
|
|
|
|
text_input.submit(
|
|
gradio_ask,
|
|
[text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag],
|
|
[text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False
|
|
).success(
|
|
gradio_stream_answer,
|
|
[chatbot, chat_state, img_list, temperature],
|
|
[chatbot, chat_state]
|
|
).success(
|
|
gradio_visualize,
|
|
[chatbot, image],
|
|
[chatbot],
|
|
queue=False,
|
|
)
|
|
|
|
send.click(
|
|
gradio_ask,
|
|
[text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag],
|
|
[text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False
|
|
).success(
|
|
gradio_stream_answer,
|
|
[chatbot, chat_state, img_list, temperature],
|
|
[chatbot, chat_state]
|
|
).success(
|
|
gradio_visualize,
|
|
[chatbot, image],
|
|
[chatbot],
|
|
queue=False,
|
|
)
|
|
|
|
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, chat_state, img_list], queue=False)
|
|
|
|
demo.launch(share=True, enable_queue=True)
|