MiniGPT-4/eval_scripts/EVAL_README.md
2023-12-07 22:49:58 -08:00

105 lines
3.3 KiB
Markdown

## Evaluation Instruction for MiniGPT-v2
### Data preparation
Images download
Image source | Download path
--- | :---:
OKVQA| <a href="https://drive.google.com/drive/folders/1jxIgAhtaLu_YqnZEl8Ym11f7LhX3nptN?usp=sharing">annotations</a> &nbsp;&nbsp; <a href="http://images.cocodataset.org/zips/train2017.zip"> images</a>
gqa | <a href="https://drive.google.com/drive/folders/1-dF-cgFwstutS4qq2D9CFQTDS0UTmIft?usp=drive_link">annotations</a> &nbsp;&nbsp; <a href="https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip">images</a>
hateful meme | <a href="https://github.com/faizanahemad/facebook-hateful-memes">images and annotations</a>
iconqa | <a href="https://iconqa.github.io/#download">images and annotation</a>
vizwiz | <a href="https://vizwiz.org/tasks-and-datasets/vqa/">images and annotation</a>
RefCOCO | <a href="https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip"> annotations </a>
RefCOCO+ | <a href="https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco+.zip"> annotations </a>
RefCOCOg | <a href="https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcocog.zip"> annotations </a>
### Evaluation dataset structure
```
${MINIGPTv2_EVALUATION_DATASET}
├── gqa
│ └── test_balanced_questions.json
│ ├── testdev_balanced_questions.json
│ ├── gqa_images
├── hateful_meme
│ └── hm_images
│ ├── dev.jsonl
├── iconvqa
│ └── iconvqa_images
│ ├── choose_text_val.json
├── vizwiz
│ └── vizwiz_images
│ ├── val.json
├── vsr
│ └── vsr_images
├── okvqa
│ ├── okvqa_test_split.json
│ ├── mscoco_val2014_annotations_clean.json
│ ├── OpenEnded_mscoco_val2014_questions_clean.json
├── refcoco
│ └── instances.json
│ ├── refs(google).p
│ ├── refs(unc).p
├── refcoco+
│ └── instances.json
│ ├── refs(unc).p
├── refercocog
│ └── instances.json
│ ├── refs(google).p
│ ├── refs(und).p
...
```
### environment setup
```
export PYTHONPATH=$PYTHONPATH:/path/to/directory/of/MiniGPT-4
```
### config file setup
Set **llama_model** to the path of LLaMA model.
Set **ckpt** to the path of our pretrained model.
Set **eval_file_path** to the path of the annotation files for each evaluation data.
Set **img_path** to the img_path for each evaluation dataset.
Set **save_path** to the save_path for each evaluation dataset.
in [eval_configs/minigptv2_benchmark_evaluation.yaml](../eval_configs/minigptv2_benchmark_evaluation.yaml)
### start evalauting RefCOCO, RefCOCO+, RefCOCOg
port=port_number
cfg_path=/path/to/eval_configs/minigptv2_benchmark_evaluation.yaml
dataset names:
| refcoco | refcoco+ | refcocog |
| ------- | -------- | -------- |
```
torchrun --master-port ${port} --nproc_per_node 1 eval_ref.py \
--cfg-path ${cfg_path} --dataset refcoco,refcoco+,refcocog --resample
```
### start evaluating visual question answering
port=port_number
cfg_path=/path/to/eval_configs/minigptv2_benchmark_evaluation.yaml
dataset names:
| okvqa | vizwiz | iconvqa | gqa | vsr | hm |
| ------- | -------- | -------- |-------- | -------- | -------- |
```
torchrun --master-port ${port} --nproc_per_node 1 eval_vqa.py \
--cfg-path ${cfg_path} --dataset okvqa,vizwiz,iconvqa,gqa,vsr,hm
```