MiniGPT-4/minigpt4/processors/imagebind_audio_processor.py
Bingyi Kang 05220fe3c1
init audio data config (#2)
- Add audio datasets
- Add audio processors 
- Add audio support in bindgpt
- Add audio training config

---------

Co-authored-by: bingyikang <bingyikang@bytedance.com>
Co-authored-by: zhaoyang <913556700@qq.com>
2023-05-26 11:44:18 +08:00

167 lines
7.7 KiB
Python

from typing import Union, List
import torch
import torchaudio
from omegaconf import OmegaConf
from pytorchvideo.data.clip_sampling import ConstantClipsPerVideoSampler, RandomMultiClipSampler
from torch import Tensor
from imagebind.data.data_utils import waveform2melspec, get_constant_clip_timepoints, \
get_random_clip_timepoints
from minigpt4.processors.base_processor import BaseProcessor
from torchvision import transforms
from minigpt4.common.registry import registry
from minigpt4.processors.audio_augment import SpecAugmentation
class ImageBindAudioBaseProcessor(BaseProcessor):
def __init__(self, mean=None, std=None, target_sr=None, clip_duration=None, clips_per_video=None,
num_mel_bins=None, target_length=None, clip_sample_method="Random"):
super().__init__()
self.mean = -4.268 if mean is None else mean
self.std = 9.138 if std is None else std
self.target_sr = 16000 if target_sr is None else target_sr
self.num_mel_bins = num_mel_bins
self.target_length = target_length
self.clip_sampler = self._construct_clip_sampler(clip_duration, clips_per_video, clip_sample_method)
self.normalize = transforms.Normalize(self.mean, self.std)
def _construct_clip_sampler(self, clip_duration, clips_per_video, clip_sample_method):
if clip_duration is None or clips_per_video is None:
return None
if clip_sample_method == "Constant":
return ConstantClipsPerVideoSampler(
clip_duration=clip_duration, clips_per_video=clips_per_video
)
elif clip_sample_method == "Random":
return RandomMultiClipSampler(clip_duration=clip_duration, num_clips=clips_per_video)
else:
raise NotImplementedError
def waveform_resample(self, waveform: Tensor, origin_sr: int) -> Tensor:
return torchaudio.functional.resample(
waveform, orig_freq=origin_sr, new_freq=self.target_sr
)
def clip_sample(self, waveform: Tensor) -> List[Tensor]:
if self.clip_sampler is None:
return [waveform]
elif isinstance(self.clip_sampler, ConstantClipsPerVideoSampler):
all_clips_timepoints = get_constant_clip_timepoints(self.clip_sampler, waveform.size(1) / self.target_sr)
elif isinstance(self.clip_sampler, RandomMultiClipSampler):
all_clips_timepoints = get_random_clip_timepoints(self.clip_sampler, waveform.size(1) / self.target_sr)
else:
raise NotImplementedError
all_clips = []
for clip_timepoints in all_clips_timepoints:
start_pos = int(clip_timepoints[0] * self.target_sr)
end_pos = int(clip_timepoints[1] * self.target_sr)
waveform_clip = waveform[:, start_pos: end_pos]
all_clips.append(waveform_clip)
return all_clips
def waveform_melspec(self, waveforms: Union[List[Tensor], Tensor]) -> List[Tensor]:
if isinstance(waveforms, Tensor):
return waveform2melspec(waveforms, self.target_sr, self.num_mel_bins, self.target_length)
else:
return [waveform2melspec(waveform, self.target_sr, self.num_mel_bins, self.target_length)
for waveform in waveforms]
@registry.register_processor("imagebind_audio_train")
class ImageBindAudioTrainProcessor(ImageBindAudioBaseProcessor):
def __init__(self, mean=None, std=None, target_sr=None, clip_duration=None, clips_per_video=None,
clip_sample_method="Random", num_mel_bins=None, target_length=None, time_drop_width=13,
time_stripes_num=2, freq_drop_width=8, freq_stripes_num=2, mask_type='mixture'):
super().__init__(mean=mean, std=std, target_sr=target_sr,
clip_duration=clip_duration, clips_per_video=clips_per_video,
num_mel_bins=num_mel_bins, target_length=target_length,
clip_sample_method=clip_sample_method)
self.spec_augment = SpecAugmentation(time_drop_width, time_stripes_num,
freq_drop_width, freq_stripes_num, mask_type)
def __call__(self, item):
# item: Tuple[Tensor, int]
waveform, origin_sr = item[0], item[1]
waveform = self.waveform_resample(waveform, origin_sr)
waveform_clips = self.clip_sample(waveform)
melspec_clips = self.waveform_melspec(waveform_clips)
normed_melspecs = [self.normalize(clip) for clip in melspec_clips]
all_clips = torch.stack(normed_melspecs, dim=0)
# all_clips: [clips_per_video, channel, mel_bins, time_steps]
# augment: [batch_size, channel, time_steps, freq_bins]
augmented_clips = self.spec_augment(all_clips.transpose(-2, -1)).transpose(-2, -1)
return augmented_clips
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
target_sr = cfg.get("target_sr", 16000)
clip_duration = cfg.get("clip_duration", 2)
clips_per_video = cfg.get("clips_per_video", 3)
num_mel_bins = cfg.get("num_mel_bins", 128)
target_length = cfg.get("target_length", 204)
time_drop_width = cfg.get("time_drop_width", 13)
time_stripes_num = cfg.get("time_stripes_num", 2)
# 13 * 2 / 204 = 12.75% Time Mask
freq_drop_width = cfg.get("freq_drop_width", 8)
freq_stripes_num = cfg.get("freq_stripes_num", 2)
# 8 * 2 / 128 = 12.5% Freq Mask
mask_type = cfg.get("mask_type", 'mixture')
mean = cfg.get("mean", None)
std = cfg.get("std", None)
return cls(
mean=mean, std=std, target_sr=target_sr,
clip_duration=clip_duration, clips_per_video=clips_per_video,
num_mel_bins=num_mel_bins, target_length=target_length,
time_drop_width=time_drop_width, time_stripes_num=time_stripes_num,
freq_drop_width=freq_drop_width, freq_stripes_num=freq_stripes_num,
mask_type=mask_type
)
@registry.register_processor("imagebind_audio_eval")
class ImageBindAudioEvalProcessor(ImageBindAudioBaseProcessor):
def __init__(self, mean=None, std=None, target_sr=None, clip_duration=None, clips_per_video=None,
clip_sample_method="Constant", num_mel_bins=None, target_length=None):
super().__init__(mean=mean, std=std, target_sr=target_sr,
clip_duration=clip_duration, clips_per_video=clips_per_video,
num_mel_bins=num_mel_bins, target_length=target_length,
clip_sample_method=clip_sample_method)
def __call__(self, item):
# item: Tuple[Tensor, int]
waveform, origin_sr = item[0], item[1]
waveform = self.waveform_resample(waveform, origin_sr)
waveform_clips = self.clip_sample(waveform)
melspec_clips = self.waveform_melspec(waveform_clips)
normed_melspecs = [self.normalize(clip) for clip in melspec_clips]
all_clips = torch.stack(normed_melspecs, dim=0)
# all_clips: [clips_per_video, channel, mel_bins, time_steps]
return all_clips
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
target_sr = cfg.get("target_sr", 16000)
clip_duration = cfg.get("clip_duration", 2)
clips_per_video = cfg.get("clips_per_video", 3)
num_mel_bins = cfg.get("num_mel_bins", 128)
target_length = cfg.get("target_length", 204)
mean = cfg.get("mean", None)
std = cfg.get("std", None)
return cls(
mean=mean, std=std, target_sr=target_sr,
clip_duration=clip_duration, clips_per_video=clips_per_video,
num_mel_bins=num_mel_bins, target_length=target_length
)