MiniGPT-4/minigpt4/datasets/datasets/vqa_datasets.py
2023-10-22 21:37:45 +03:00

223 lines
8.4 KiB
Python
Executable File

"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import torch
from PIL import Image
import os
from minigpt4.datasets.datasets.base_dataset import BaseDataset
class VQADataset(BaseDataset):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
# def collater(self, samples):
# image_list, question_list, answer_list, weight_list = [], [], [], []
# num_answers = []
# for sample in samples:
# image_list.append(sample["image"])
# question_list.append(sample["question"])
# weight_list.extend(sample["weights"])
# answers = sample["answer"]
# answer_list.extend(answers)
# num_answers.append(len(answers))
# return {
# "image": torch.stack(image_list, dim=0),
# "text_input": question_list,
# "answer": answer_list,
# "weight": torch.Tensor(weight_list),
# "n_answers": torch.LongTensor(num_answers),
# }
class VQAEvalDataset(BaseDataset):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
class OKVQAEvalData(torch.utils.data.Dataset):
def __init__(self, loaded_data, vis_processor, root_path):
self.loaded_data = loaded_data
self.root_path = root_path
self.vis_processor = vis_processor
def __len__(self):
return len(self.loaded_data)
def __getitem__(self, idx):
data = self.loaded_data[idx]
img_id = data['image_id']
question = data['question']
question_id = data['question_id']
img_file = '{:0>12}.jpg'.format(img_id)
image_path = os.path.join(self.root_path, img_file)
image = Image.open(image_path).convert('RGB')
image = self.vis_processor(image)
question = f"[vqa] Based on the image, respond to this question with a short answer: {question}"
# question = f"[vqa] {question} "
return image, question, question_id, img_id
class VizWizEvalData(torch.utils.data.Dataset):
def __init__(self, loaded_data, vis_processor, root_path):
self.loaded_data = loaded_data
self.root_path = root_path
self.vis_processor = vis_processor
def __len__(self):
return len(self.loaded_data)
def __getitem__(self, idx):
data = self.loaded_data[idx]
img_id = data['image']
question = data['question']
answers = data['answers']
answers = '_'.join([answer['answer'] for answer in answers])
image_path = os.path.join(self.root_path, img_id)
image = Image.open(image_path).convert('RGB')
image = self.vis_processor(image)
# question = f"[vqa] Based on the image, respond to this question with a short answer: {question} "
question = f"[vqa] Based on the image, respond to this question with a short answer: {question} and reply 'unanswerable' if you could not answer it"
return image, question, answers
class AOKVQADAEvalData(torch.utils.data.Dataset):
def __init__(self, loaded_data, vis_processor, root_path):
self.loaded_data = loaded_data
self.root_path = root_path
self.vis_processor = vis_processor
def __len__(self):
return len(self.loaded_data)
def __getitem__(self, idx):
data = self.loaded_data[idx]
img_file = data['image']
question = data['question']
question_id = data['question_id']
image_path = os.path.join(self.root_path, img_file)
image = Image.open(image_path).convert('RGB')
image = self.vis_processor(image)
question = f"[vqa] Based on the image, respond to this question with a short answer: {question}"
# question = f"[vqa] {question} "
return image, question, question_id
class AOKVQAMCEvalData(torch.utils.data.Dataset):
def __init__(self, loaded_data, vis_processor, root_path):
self.loaded_data = loaded_data
self.root_path = root_path
self.vis_processor = vis_processor
def __len__(self):
return len(self.loaded_data)
def __getitem__(self, idx):
data = self.loaded_data[idx]
img_file = data['image']
question = data['question']
question_id = data['question_id']
image_path = os.path.join(self.root_path, img_file)
image = Image.open(image_path).convert('RGB')
image = self.vis_processor(image).half().cuda()
candidates=data['choices']
# question = f"Given this image, choose one correct answer from {candidates} for this question: {question} "
question = f"[vqa] Based on the image, respond to this question with a short answer: {question}"
# question = f"[vqa] {question} "
return image, question, question_id, candidates
class IconQAEvalData(torch.utils.data.Dataset):
def __init__(self, loaded_data, vis_processor, root_path):
self.loaded_data = loaded_data
self.root_path = root_path
self.vis_processor = vis_processor
def __len__(self):
return len(self.loaded_data)
def __getitem__(self, idx):
data = self.loaded_data[idx]
image_id = data['image_id']
question = data['question']
image_path = os.path.join(self.root_path, image_id, 'image.png')
image = Image.open(image_path).convert('RGB')
image = self.vis_processor(image).half().cuda()
candidates = '_'.join(data['choices'])
answer = data['answer']
# question = f"Given this image, choose one correct answer from {candidates} for this question: {question} "
question = f"[vqa] Based on the image, respond to this question with a short answer: {question}"
# question = f"[vqa] {question} "
return image, question, candidates, answer
class GQAEvalData(torch.utils.data.Dataset):
def __init__(self, loaded_data, vis_processor, root_path):
self.loaded_data = loaded_data
self.root_path = root_path
self.vis_processor = vis_processor
def __len__(self):
return len(self.loaded_data)
def __getitem__(self, idx):
ann = self.loaded_data[idx]
image_id = ann["image"]
image_path = os.path.join(self.root_path, f"{image_id}")
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
question = ann["question"]
# question = f'Question: {question} Short answer: '
question = f"[vqa] Based on the image, respond to this question with a short answer: {question}"
# question = f"[vqa] {question} "
labels = ann["answer"]
return image, question, labels
class HMEvalData(torch.utils.data.Dataset):
def __init__(self, loaded_data, vis_processor, root_path):
self.loaded_data = loaded_data
self.root_path = root_path
self.vis_processor = vis_processor
def __len__(self):
return len(self.loaded_data)
def __getitem__(self, idx):
ann = self.loaded_data[idx]
image_id = ann["img"]
image_path = os.path.join(self.root_path, f"{image_id}")
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
question = ann["text"]
question = f"[vqa] This is an image with: \"{question}\" written on it. Is it hateful? Answer:"
labels = ann["label"]
return image, question, labels
class VSREvalData(torch.utils.data.Dataset):
def __init__(self, loaded_data, vis_processor, root_path):
self.loaded_data = loaded_data
self.root_path = root_path
self.vis_processor = vis_processor
def __len__(self):
return len(self.loaded_data)
def __getitem__(self, idx):
ann = self.loaded_data[idx]
image_path = os.path.join(self.root_path, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
question = ann["caption"]
question = f'[vqa] Based on the image, is this statement true or false? {question}'
question_id = ann["image"].split('.')[0]
labels = 'true' if ann["label"] == 1 else 'false'
return image, question, labels