MiniGPT-4/minigpt4/models/blip2_t5_instruct_pro_moe.py
2023-12-01 23:17:44 +08:00

1128 lines
47 KiB
Python

"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import string
import random
import copy
import json
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import autocast as autocast
from transformers import T5TokenizerFast
from minigpt4.common.registry import registry
from minigpt4.models.blip2 import Blip2Base, disabled_train
from minigpt4.models.modeling_t5 import T5Config, T5ForConditionalGeneration
from transformers.modeling_outputs import BaseModelOutput
from minigpt4.models.moe.prompt_moe import init_query_token_candidates, PrePromptMoE, PostPromptMoE
@registry.register_model("blip2_t5_instruct_pro_moe")
class Blip2T5InstructPromptMOE(Blip2Base):
"""
BLIP2 Instruct T5 model Prompt MoE
Supported model types:
- flant5xxl
Usage:
>>> from minigpt4.models import load_model
>>> import torch
>>> device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
>>> model = load_model("blip2_t5_instruct_pro_moe", "flant5xxl", device=device)
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"flant5xxl": "configs/models/blip2/blip2_instruct_flant5xxl_prompt_moe.yaml",
}
def __init__(
self,
vit_model="eva_clip_g",
q_former_model="/mnt/pfs-guan-ssai/nlu/wanghanzi/models/blip2/blip2-flant5-xxl/blip2_pretrained_flant5xxl.pth",
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
freeze_llm=True,
freeze_qformer=False,
freeze_t5_proj=False,
num_query_token=32,
t5_model="google/flan-t5-xl",
prompt="",
max_txt_len=128,
max_output_txt_len=256,
apply_lemmatizer=False,
num_few_shot_examples=0,
few_shot_prob=0,
qformer_text_input=True,
repeat_to_init_qt_candidates=True,
num_qt_candidates=5,
moe_topk=2,
moe_position="pre",
embed_extract="t5",
eval_gate_save=False,
train_gate_save=False,
gate_save_path="",
):
"""
apply_lemmatizer: when set to True, postprocess predict_answers() result with lemmas.
"""
super().__init__()
self.tokenizer = self.init_tokenizer(truncation_side="left")
print("Init BLIP2 Instruct Flant5xxl Prompt MoE")
print('Initing & Loading VIT')
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
)
# freeze vit
if freeze_vit:
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
# freeze ln vision
for name, param in self.ln_vision.named_parameters():
param.requires_grad = False
self.ln_vision = self.ln_vision.eval()
self.ln_vision.train = disabled_train
logging.info("freeze vision encoder")
print('Loading VIT Done')
print('Initing Q-Former')
self.Qformer, self.query_tokens = self.init_Qformer(
num_query_token, self.visual_encoder.num_features
)
if not qformer_text_input:
self.Qformer.bert.embeddings.word_embeddings = None
self.Qformer.bert.embeddings.position_embeddings = None
for layer in self.Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
else:
self.Qformer.resize_token_embeddings(len(self.tokenizer))
self.Qformer.cls = None
print('Loading T5')
self.t5_tokenizer = T5TokenizerFast.from_pretrained(t5_model, truncation_side='left')
self.t5_output_tokenizer = T5TokenizerFast.from_pretrained(t5_model, truncation_side='right')
t5_config = T5Config.from_pretrained(t5_model)
t5_config.dense_act_fn = "gelu"
self.t5_model = T5ForConditionalGeneration.from_pretrained(
t5_model, config=t5_config, use_safetensors=False
)
# freeze t5 llm
if freeze_llm:
for name, param in self.t5_model.named_parameters():
param.requires_grad = False
param.data = param.data.bfloat16()
print('Loading T5 Done')
print("Initing t5 linear projection")
self.t5_proj = nn.Linear(
self.Qformer.config.hidden_size, self.t5_model.config.hidden_size
)
# load BLIP2 Pretrain
print("Loading BLIP2 Parameters from :", q_former_model)
self.load_from_pretrained(url_or_filename=q_former_model)
print('Init query token candidates')
self.moe_position = moe_position
if num_qt_candidates > 1:
self.query_token_candidates = init_query_token_candidates(num_query_token, num_qt_candidates) # shape:[num_qt_candidates, num_query_token, q_former_hidden_size]
if repeat_to_init_qt_candidates:
self.query_token_candidates = torch.nn.Parameter(self.query_tokens.repeat(num_qt_candidates, 1, 1))
self.query_tokens.requires_grad = False
print(self.query_token_candidates.shape)
if self.moe_position == "pre": # PromptMoE + Qformer
self.embed_extract = embed_extract
if self.embed_extract == "t5":
self.text_embed_size = self.t5_model.config.hidden_size
elif self.embed_extract == "blip2_pretrain":
from minigpt4.models import load_model
self.embed_extractor = load_model(
"blip2",
"pretrain",
is_eval=True,
) # BLIP2 first-stage model with Q-former and ViT.
for name, param in self.embed_extractor.named_parameters():
param.requires_grad = False
# self.text_embed_size = self.Qformer.config.hidden_size
self.text_embed_size = self.embed_extractor.text_proj.out_features
elif self.embed_extract == "random":
self.text_embed_size = self.Qformer.config.hidden_size
self.PromptMoE = PrePromptMoE(self.text_embed_size, num_qt_candidates, self.query_token_candidates, route_method="gate-single-token", topk=moe_topk)
elif moe_position == "post": # Qformer + PromptMoE
self.text_embed_size = self.Qformer.config.hidden_size
self.PromptMoE = PostPromptMoE(self.text_embed_size, num_qt_candidates, topk=moe_topk)
# freeze qformer
if freeze_qformer:
for name, param in self.Qformer.named_parameters():
param.requires_grad = False
self.Qformer = self.Qformer.eval()
self.Qformer.train = disabled_train
logging.info("freeze Qformer")
# After loading, freeze t5_proj
if freeze_t5_proj:
for name, param in self.t5_proj.named_parameters():
param.requires_grad = False
self.t5_proj = self.t5_proj.eval()
self.t5_proj.train = disabled_train
self.max_txt_len = max_txt_len
self.max_output_txt_len = max_output_txt_len
self.prompt = prompt
self._apply_lemmatizer = apply_lemmatizer
self._lemmatizer = None
self.num_few_shot_examples = num_few_shot_examples
self.few_shot_prob = few_shot_prob
self.qformer_text_input = qformer_text_input
self.num_qt_candidates = num_qt_candidates
self.gate_save_path = gate_save_path
self.train_gate_save = train_gate_save
self.eval_gate_save = eval_gate_save
if gate_save_path!="" and (not os.path.exists(gate_save_path)):
print(gate_save_path)
os.mkdir(gate_save_path)
def forward(self, samples):
# print('-----------------')
# print(samples["text_input"])
# print(samples.keys())
# print(samples)
# print(samples["text_output"])
# print('-----------------')
import torch
samples = {
'text_input':["What is around the open window?", # n23181
"Is the ground blue or brown?", # n168412
"What color are the pants?", # n446242
"What is the airplane flying above?"], # n414992
'text_output':["drapes",
"brown",
"red",
"ocean"
],
'image': torch.randn(4, 3, 224, 224).half().to(device)
}
image = samples["image"]
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
bz = image_embeds.shape[0]
if self.moe_position == "pre":
if self.num_qt_candidates > 1:
## extract text_embeds
with self.maybe_autocast(dtype=torch.bfloat16):
if self.embed_extract == "t5":
text_embeds = self._extract_text_embed_by_t5(samples['q_input'], samples['text_output'], image.device)
elif self.embed_extract == "blip2_pretrain":
text_embeds = self._extract_text_embed_by_qformer_pretrain_s1(samples['q_input'], image.device)
elif self.embed_extract == "random":
text_embeds = torch.randn(bz, 1, self.text_embed_size )
## select proper query_tokens by prompt moe
select_query_tokens, balance_loss, importance_loss, gate_load, gate = self.PromptMoE._forward_gate_single_token(text_embeds)
query_tokens = select_query_tokens # torch.Size([bz, 32, 768])
else:
query_tokens = self.query_tokens.expand(bz, -1, -1)
balance_loss, importance_loss = 0, 0
## Q-former Forward with one query tokens
if self.qformer_text_input:
text_Qformer = self.tokenizer(
samples["q_input"],
padding='longest',
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
Qformer_atts = torch.cat([query_atts,text_Qformer.attention_mask],dim=1)
query_output = self.Qformer.bert(
text_Qformer.input_ids,
attention_mask=Qformer_atts,
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
else:
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
query_output_to_linear = query_output.last_hidden_state[:,:query_tokens.size(1),:]
elif self.moe_position == "post":
# self.query_token_candidates : size[num_qt_candidates, 32, 768]
candi_query_tokens = self.query_token_candidates.expand(bz, -1, -1, -1).reshape(-1, self.query_token_candidates.shape[1], self.query_token_candidates.shape[2]) # size[num_qt_candidates*bz, 32, 768]
image_embeds_repeat = image_embeds.repeat_interleave(self.num_qt_candidates, dim=0)
image_atts_repeat = image_atts.repeat_interleave(self.num_qt_candidates, dim=0)
## Q-former Forward with candidates query tokens
if self.qformer_text_input:
text_Qformer = self.tokenizer(
samples["q_input"],
padding='longest',
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
text_Qformer_input_ids_repeat = text_Qformer.input_ids.repeat_interleave(self.num_qt_candidates, dim=0) # [bz*num_qt_candidates, batch_seq_len]
text_Qformer_attn_mask_repeat = text_Qformer.attention_mask.repeat_interleave(self.num_qt_candidates, dim=0) # [bz*num_qt_candidates, batch_seq_len]
query_atts = torch.ones(candi_query_tokens.size()[:-1], dtype=torch.long).to(image.device)
Qformer_atts = torch.cat([query_atts,text_Qformer_attn_mask_repeat],dim=1)
query_output = self.Qformer.bert(
text_Qformer_input_ids_repeat,
attention_mask=Qformer_atts,
query_embeds=candi_query_tokens,
encoder_hidden_states=image_embeds_repeat,
encoder_attention_mask=image_atts_repeat,
return_dict=True,
) # query_output.last_hidden_state size [torch.Size([bz*num_qt_candidates, 32+batch_seq_len, 768])]
query_output_to_linear = query_output.last_hidden_state[:,:self.query_token_candidates.size(1),:]
else:
query_output = self.Qformer.bert(
query_embeds=candi_query_tokens,
encoder_hidden_states=image_embeds_repeat,
encoder_attention_mask=image_atts_repeat,
return_dict=True,
) # query_output.last_hidden_state size [torch.Size([bz*num_qt_candidates, 32, 768])]
# [(sample1, query1), (sample1, query2),..., (sample2, query1),(sample2, query2), ... , (sample_bz, query1),..., (sample_bz, queryn)]
text_cls = query_output.last_hidden_state[:,self.query_token_candidates.size(1),:] # torch.Size([bz*num_qt_candidates, 768])
text_cls_split = text_cls.view(bz, self.num_qt_candidates, -1) # torch.Size([bz, num_qt_candidates, 768])
query_tokens_output = query_output.last_hidden_state[:, :self.query_token_candidates.size(1), :] # torch.Size([bz*num_qt_candidates, 32, 768])
query_output_to_linear, balance_loss, importance_loss, gate_load, gate = self.PromptMoE._forward_gate_text_single_token(text_cls_split, query_tokens_output)
inputs_t5 = self.t5_proj(query_output_to_linear)
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
fs_embeds, fs_atts = None, None
if self.few_shot_prob > 0 and "few_shot_samples" in samples.keys():
fs_embeds, fs_atts = self.prepare_few_shot_embeds(samples['few_shot_samples'])
with self.maybe_autocast(dtype=torch.bfloat16):
input_tokens = self.t5_tokenizer(
samples["llm_input"],
padding="longest",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
output_tokens = self.t5_output_tokenizer(
samples["text_output"],
padding="longest",
truncation=True,
max_length=self.max_output_txt_len,
return_tensors="pt",
).to(image.device)
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
targets = output_tokens.input_ids.masked_fill(
output_tokens.input_ids == self.t5_tokenizer.pad_token_id, -100
)
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
if fs_embeds is not None:
inputs_embeds = torch.cat([fs_embeds, inputs_embeds], dim=1)
encoder_atts = torch.cat([fs_atts, encoder_atts], dim=1)
outputs = self.t5_model(
inputs_embeds=inputs_embeds,
attention_mask=encoder_atts,
decoder_attention_mask=output_tokens.attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
if self.train_gate_save:
self._save_gate(
samples['q_input'],
samples['text_output'],
gate,
samples['image_id'],
gate_load,
os.path.join(self.gate_save_path, "train_gate.txt")
)
final_loss = loss + balance_loss + importance_loss
return {"loss": final_loss}
@torch.no_grad()
def generate(
self,
samples,
use_nucleus_sampling=False,
num_beams=5,
max_length=256,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1.0,
num_captions=1,
temperature=1,
):
if "prompt" in samples.keys():
prompt = samples["prompt"]
else:
prompt = self.prompt
image = samples["image"]
bs = image.size(0)
if isinstance(prompt, str):
prompt = [prompt] * bs
else:
assert len(prompt) == bs, "The number of prompts must be equal to the batch size."
# For TextCaps
if "ocr_tokens" in samples.keys() and "{}" in prompt[0]:
prompt = [p.format(', '.join(samples['ocr_tokens'][i][:30])) for i, p in enumerate(prompt)]
# image embed
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
if self.moe_position == "pre":
if self.num_qt_candidates > 1:
with self.maybe_autocast(dtype=torch.bfloat16):
if self.embed_extract == "t5":
text_embeds = self._extract_text_embed_by_t5(samples["q_input"], samples['text_output'], image.device)
elif self.embed_extract == "blip2_pretrain":
text_embeds = self._extract_text_embed_by_qformer_pretrain_s1(samples["q_input"], image.device)
elif self.embed_extract == "random":
text_embeds = torch.randn(bs, 1, self.text_embed_size )
select_query_tokens, _, _, gate_load, gate = self.PromptMoE._forward_gate_single_token(text_embeds)
query_tokens = select_query_tokens # torch.Size([bz, 32, 768])
else: # back to one query token
query_tokens = self.query_tokens.expand(bs, -1, -1)
if self.qformer_text_input:
# remove ocr tokens in q_former (for eval textvqa)
# qformer_prompt = prompt
# qformer_prompt = ['Question: ' + qp.split(' Question: ')[1] for qp in qformer_prompt]
text_Qformer = self.tokenizer(
samples["q_input"],
padding='longest',
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
Qformer_atts = torch.cat([query_atts,text_Qformer.attention_mask],dim=1)
query_output = self.Qformer.bert(
text_Qformer.input_ids,
attention_mask=Qformer_atts,
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
else:
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
query_output_to_linear = query_output.last_hidden_state[:,:query_tokens.size(1),:]
elif self.moe_position == "post":
# self.query_token_candidates : size[num_qt_candidates, 32, 768]
candi_query_tokens = self.query_token_candidates.expand(bs, -1, -1, -1).reshape(-1, self.query_token_candidates.shape[1], self.query_token_candidates.shape[2]) # size[num_qt_candidates*bz, 32, 768]
image_embeds_repeat = image_embeds.repeat_interleave(self.num_qt_candidates, dim=0)
image_atts_repeat = image_atts.repeat_interleave(self.num_qt_candidates, dim=0)
## Q-former Forward with candidates query tokens
if self.qformer_text_input:
text_Qformer = self.tokenizer(
samples["q_input"],
padding='longest',
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
text_Qformer_input_ids_repeat = text_Qformer.input_ids.repeat_interleave(self.num_qt_candidates, dim=0) # [bz*num_qt_candidates, batch_seq_len]
text_Qformer_attn_mask_repeat = text_Qformer.attention_mask.repeat_interleave(self.num_qt_candidates, dim=0) # [bz*num_qt_candidates, batch_seq_len]
query_atts = torch.ones(candi_query_tokens.size()[:-1], dtype=torch.long).to(image.device)
Qformer_atts = torch.cat([query_atts,text_Qformer_attn_mask_repeat],dim=1)
query_output = self.Qformer.bert(
text_Qformer_input_ids_repeat,
attention_mask=Qformer_atts,
query_embeds=candi_query_tokens,
encoder_hidden_states=image_embeds_repeat,
encoder_attention_mask=image_atts_repeat,
return_dict=True,
) # query_output.last_hidden_state size [torch.Size([bz*num_qt_candidates, 32+batch_seq_len, 768])]
query_output_to_linear = query_output.last_hidden_state[:,:self.query_token_candidates.size(1),:]
else:
query_output = self.Qformer.bert(
query_embeds=candi_query_tokens,
encoder_hidden_states=image_embeds_repeat,
encoder_attention_mask=image_atts_repeat,
return_dict=True,
) # query_output.last_hidden_state size [torch.Size([bz*num_qt_candidates, 32, 768])]
# [(sample1, query1), (sample1, query2),..., (sample2, query1),(sample2, query2), ... , (sample_bz, query1),..., (sample_bz, queryn)]
text_cls = query_output.last_hidden_state[:,self.query_token_candidates.size(1),:] # torch.Size([bz*num_qt_candidates, 768])
text_cls_split = text_cls.view(bs, self.num_qt_candidates, -1) # torch.Size([bz, num_qt_candidates, 768])
query_tokens_output = query_output.last_hidden_state[:, :self.query_token_candidates.size(1), :] # torch.Size([bz*num_qt_candidates, 32, 768])
query_output_to_linear, _, _, gate_load, gate = self.PromptMoE._forward_gate_text_single_token(text_cls_split, query_tokens_output)
# For video data deleted : TODO
inputs_t5 = self.t5_proj(query_output_to_linear)
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
input_tokens = self.t5_tokenizer(
prompt,
padding="longest",
return_tensors="pt"
).to(image.device)
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
with self.maybe_autocast(dtype=torch.bfloat16):
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
outputs = self.t5_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=encoder_atts,
do_sample=use_nucleus_sampling,
top_p=top_p,
temperature=temperature,
num_beams=num_beams,
max_new_tokens=max_length,
min_length=min_length,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
num_return_sequences=num_captions,
)
output_text = self.t5_tokenizer.batch_decode(
outputs, skip_special_tokens=True
)
if self.eval_gate_save:
if "image_name" in samples.keys():
id_lst = samples['image_name']
elif "image_id" in samples.keys():
id_lst = samples['image_id']
try:
self._save_gate(
samples['q_input'],
output_text,
gate,
id_lst,
gate_load,
os.path.join(self.gate_save_path, "eval_gate.txt")
)
except Exception as e:
print("Evaluate save gate Error:", e)
# : TODO Evaluate save gate Error: local variable 'id_lst' referenced before assignment
return output_text
def predict_answers(
self,
samples,
num_beams=5,
inference_method="generate",
max_len=10,
min_len=1,
num_ans_candidates=128,
answer_list=None,
prompt="",
length_penalty=-1,
**kwargs
):
if isinstance(samples["llm_input"], str):
samples["llm_input"] = [samples["llm_input"]]
if prompt:
if prompt.count("{}") == 2:
if 'ocr_tokens' in samples:
text_input = [
prompt.format(', '.join(samples['ocr_tokens'][i][:30]), samples["llm_input"][i])
for i in range(len(samples["llm_input"]))]
elif 'choices' in samples:
text_input = []
for i in range(len(samples["llm_input"])):
this_choices = [f"({string.ascii_lowercase[j]}) {ch}" for j, ch in enumerate(samples["choices"][i])]
this_choices = " ".join(this_choices)
text_input.append(prompt.format(samples["llm_input"][i], this_choices))
else:
text_input = [prompt.format(question) for question in samples["llm_input"]]
else:
text_input = samples["llm_input"]
samples["prompt"] = text_input
output_text = self.generate(
samples,
num_beams=num_beams,
max_length=max_len,
min_length=min_len,
length_penalty=length_penalty
)
if self._apply_lemmatizer or ("apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]):
output_text = self._lemmatize(output_text)
return output_text
def predict_class(
self,
samples,
candidates,
n_segments=1,
):
# If candidates is a list of lists, each sample has its candidates, then we need to iterate one by one
if type(candidates[0]) == list:
results = []
for i in range(samples["image"].size(0)):
this_sample = {
"image": samples["image"][i].unsqueeze(0),
"prompt": samples["prompt"],
}
if "text_input" in samples.keys():
this_sample["text_input"] = [samples["text_input"][i]]
if 'context' in samples.keys():
this_sample['context'] = [samples["context"][i]]
if 'history' in samples.keys():
this_sample['history'] = [samples["history"][i]]
if 'caption' in samples.keys():
this_sample['caption'] = [samples["caption"][i]]
this_result = self._predict_class(this_sample, candidates[i], n_segments)
results.append(this_result)
try:
results = torch.cat(results, dim=0)
except:
results = [res.tolist()[0] for res in results]
return results
return self._predict_class(samples, candidates, n_segments)
def _predict_class(
self,
samples,
candidates,
n_segments=1,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- prompt: the instruction
candidates:
(list): A list of candidate class names;
n_segments:
(int): Split the candidates into n_segments and predict one by one. This is useful when the number of candidates is too large.
Returns:
output_class: predicted class index
"""
image = samples["image"]
prompt = samples["prompt"]
bs = image.size(0)
if isinstance(prompt, str):
prompt = [prompt] * bs
else:
assert len(prompt) == bs, "The number of prompts must be equal to the batch size."
if "text_input" in samples.keys():
if type(samples["text_input"][0]) == list:
prompt = [prompt[i].format(*samples["text_input"][i]) for i in range(len(prompt))]
else:
prompt = [prompt[i].format(samples["text_input"][i]) for i in range(len(prompt))]
# scienceqa
if 'context' in samples.keys() and samples['context'] != '':
prompt = [f'context: {samples["context"][i]}. {prompt[i]}' for i in range(len(prompt))]
# visual dialog
if 'history' in samples.keys() and samples['history'][0] != '':
prompt = [f'dialog history: {samples["history"][i]}\n{prompt[i]}' for i in range(len(prompt))]
if 'caption' in samples.keys() and samples['caption'][0] != '':
prompt = [f'This image has the caption "{samples["caption"][i]}". {prompt[i]}' for i in range(len(prompt))]
query_tokens = self.query_tokens.expand(bs, -1, -1)
if self.qformer_text_input:
text_Qformer = self.tokenizer(
prompt,
padding='longest',
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt"
).to(image.device)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
Qformer_atts = torch.cat([query_atts,text_Qformer.attention_mask], dim=1)
if image.dim() == 5:
inputs_t5, atts_t5 = [], []
for j in range(image.size(2)):
this_frame = image[:,:,j,:,:]
with self.maybe_autocast():
frame_embeds = self.ln_vision(self.visual_encoder(this_frame))
frame_atts = torch.ones(frame_embeds.size()[:-1], dtype=torch.long).to(image.device)
if self.qformer_text_input:
frame_query_output = self.Qformer.bert(
text_Qformer.input_ids,
attention_mask=Qformer_atts,
query_embeds=query_tokens,
encoder_hidden_states=frame_embeds,
encoder_attention_mask=frame_atts,
return_dict=True,
)
else:
frame_query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=frame_embeds,
encoder_attention_mask=frame_atts,
return_dict=True,
)
frame_inputs_t5 = self.t5_proj(frame_query_output.last_hidden_state[:,:query_tokens.size(1),:])
frame_atts_t5 = torch.ones(frame_inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
inputs_t5.append(frame_inputs_t5)
atts_t5.append(frame_atts_t5)
inputs_t5 = torch.cat(inputs_t5, dim=1)
atts_t5 = torch.cat(atts_t5, dim=1)
else:
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
if self.qformer_text_input:
query_output = self.Qformer.bert(
text_Qformer.input_ids,
attention_mask=Qformer_atts,
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
else:
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_t5 = self.t5_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:])
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
input_tokens = self.t5_tokenizer(
prompt, padding="longest", return_tensors="pt"
).to(image.device)
output_tokens = self.t5_tokenizer(
candidates, padding="longest", return_tensors="pt"
).to(image.device)
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
n_cands = len(candidates)
with self.maybe_autocast(dtype=torch.bfloat16):
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
encoder_outputs = self.t5_model.encoder(
inputs_embeds=inputs_embeds,
attention_mask=encoder_atts,
)
all_losses = []
for n in range(n_segments):
seg_len = n_cands // n_segments
if n == (n_segments - 1):
seg_len = n_cands - seg_len * (n_segments - 1)
# this_encoder_outputs = copy.deepcopy(encoder_outputs)
this_encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0].clone(),
)
this_encoder_outputs['last_hidden_state'] = this_encoder_outputs[0].repeat_interleave(seg_len, dim=0)
this_encoder_atts = encoder_atts.repeat_interleave(seg_len, dim=0)
start_i = n * (n_cands // n_segments)
end_i = start_i + seg_len
this_output_tokens_ids = output_tokens.input_ids[start_i:end_i].repeat(bs, 1)
this_output_tokens_atts = output_tokens.attention_mask[start_i:end_i].repeat(bs, 1)
this_targets = this_output_tokens_ids.masked_fill(this_output_tokens_ids == self.t5_tokenizer.pad_token_id, -100)
outputs = self.t5_model(
encoder_outputs=this_encoder_outputs,
attention_mask=this_encoder_atts,
decoder_attention_mask=this_output_tokens_atts,
return_dict=True,
labels=this_targets,
reduction="none",
)
loss = outputs.loss
loss = loss.reshape(bs, seg_len)
# output_class_ranks = torch.argsort(loss, dim=-1)
all_losses.append(loss)
all_losses = torch.cat(all_losses, dim=-1)
output_class_ranks = torch.argsort(all_losses, dim=-1)
# encoder_outputs['last_hidden_state'] = encoder_outputs[0].repeat_interleave(n_cands, dim=0)
# encoder_atts = encoder_atts.repeat_interleave(n_cands, dim=0)
# output_tokens.input_ids = output_tokens.input_ids.repeat(bs, 1)
# output_tokens.attention_mask = output_tokens.attention_mask.repeat(bs, 1)
# # compute the LM loss for each candidate (sum logprob across all tokens) and select the highest
# targets = output_tokens.input_ids.masked_fill(output_tokens.input_ids == self.t5_tokenizer.pad_token_id, -100)
# outputs = self.t5_model(
# encoder_outputs=encoder_outputs,
# attention_mask=encoder_atts,
# decoder_attention_mask=output_tokens.attention_mask,
# return_dict=True,
# labels=targets,
# reduction="none",
# )
# loss = outputs.loss
# loss = loss.reshape(bs, n_cands)
# output_class_ranks = torch.argsort(loss, dim=-1) # (bs, num_candidates)
return output_class_ranks
def prepare_few_shot_embeds(self, samples):
this_n_fs = random.choices(
list(range(self.num_few_shot_examples + 1)),
weights=[1 - self.few_shot_prob] + [self.few_shot_prob / self.num_few_shot_examples] * self.num_few_shot_examples
)[0]
if this_n_fs == 0:
return None, None
images = []
text_input = []
for sample in samples:
for n in range(this_n_fs):
images.append(sample['image'][n])
text_input.append(sample['text_input'][n])
images = torch.stack(images, dim=0)
image = images
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
if self.qformer_text_input:
text_Qformer = self.tokenizer(
text_input,
padding='longest',
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
Qformer_atts = torch.cat([query_atts,text_Qformer.attention_mask],dim=1)
query_output = self.Qformer.bert(
text_Qformer.input_ids,
attention_mask = Qformer_atts,
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
else:
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_t5 = self.t5_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:])
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
with self.maybe_autocast(dtype=torch.bfloat16):
input_tokens = self.t5_tokenizer(
text_input,
padding="longest",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
if this_n_fs > 1:
encoder_atts = encoder_atts.reshape(encoder_atts.size(0) // this_n_fs, encoder_atts.size(1) * this_n_fs)
inputs_embeds = inputs_embeds.reshape(inputs_embeds.size(0) // this_n_fs, inputs_embeds.size(1) * this_n_fs, inputs_embeds.size(2))
return inputs_embeds, encoder_atts
def _extract_text_embed_by_qformer_pretrain_s1(
self,
text_input,
device
):
text_inputs = self.embed_extractor.tokenizer(
text_input,
padding="max_length",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(device)
text_feats = self.embed_extractor.forward_text(text_inputs)
# return text_feats.unsqueeze(1) # torch.Size([bz, 1, 768])
text_embeds = F.normalize(self.embed_extractor.text_proj(text_feats))
return text_embeds.unsqueeze(1) # torch.Size([bz, 1, 256])
def _extract_text_embed_by_t5(
self,
text_input,
text_output,
device
):
bz = len(text_input)
input_tokens = self.t5_tokenizer(
text_input,
padding="longest",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(device)
output_tokens = self.t5_output_tokenizer(
text_output,
padding="longest",
truncation=True,
max_length=self.max_output_txt_len,
return_tensors="pt",
).to(device)
targets = output_tokens.input_ids.masked_fill(
output_tokens.input_ids == self.t5_tokenizer.pad_token_id, -100
)
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
text_outputs = self.t5_model(
inputs_embeds=inputs_embeds,
attention_mask=input_tokens.attention_mask,
decoder_attention_mask=output_tokens.attention_mask,
return_dict=True,
labels=targets,
)
last_token_embeds = list()
for i in range(bz):
seq_pos = (torch.nonzero(input_tokens.attention_mask[i]).squeeze())[-1].item() # 取最后<seq>位置
last_token_embed = text_outputs.encoder_last_hidden_state[i][seq_pos]
last_token_embeds.append(last_token_embed.unsqueeze(0))
text_embeds = torch.concat(last_token_embeds, dim=0).unsqueeze(1) # torch.Size([bz, 1, 4096])
return text_embeds
def _save_gate(self, input_text, output_text, gate, id_lst, gate_load, gate_save_file):
tt = list()
for tinput, toutput, g, id_ in zip(input_text, output_text, gate, id_lst):
tt.append({
'text_input': tinput,
'text_output': toutput,
'gate': g.tolist(),
'image': id_,
'batch_gate_load': gate_load.tolist()
})
with open(gate_save_file, "a") as f:
f.write(f"{json.dumps(tt)}\n")
def _lemmatize(self, answers):
def apply(answer):
doc = self.lemmatizer(answer)
words = []
for token in doc:
if token.pos_ in ["NOUN", "VERB"]:
words.append(token.lemma_)
else:
words.append(token.text)
answer = " ".join(words)
return answer
return [apply(answer) for answer in answers]
@property
def lemmatizer(self):
if self._lemmatizer is None:
try:
import spacy
self._lemmatizer = spacy.load("en_core_web_sm")
except ImportError:
logging.error(
"""
Please install spacy and en_core_web_sm model to apply lemmatization.
python -m spacy download en_core_web_sm
OR
import spacy.cli
spacy.cli.download("en_core_web_sm")
"""
)
exit(1)
return self._lemmatizer
@classmethod
def from_config(cls, cfg):
vit_model = cfg.get("vit_model", "eva_clip_g")
q_former_model = cfg.get("q_former_model", "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/blip2/blip2-flant5-xxl/blip2_pretrained_flant5xxl.pth")
img_size = cfg.get("image_size")
num_query_token = cfg.get("num_query_token")
t5_model = cfg.get("t5_model")
drop_path_rate = cfg.get("drop_path_rate", 0)
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
vit_precision = cfg.get("vit_precision", "fp16")
freeze_vit = cfg.get("freeze_vit", True)
freeze_llm = cfg.get("freeze_llm", True)
freeze_qformer = cfg.get("freeze_qformer", False)
freeze_t5_proj = cfg.get("freeze_t5_proj", False)
prompt = cfg.get("prompt", "")
max_txt_len = cfg.get("max_txt_len", 128)
max_output_txt_len = cfg.get("max_output_txt_len", 256)
apply_lemmatizer = cfg.get("apply_lemmatizer", False)
num_few_shot_examples = cfg.get("num_few_shot_examples", 0)
few_shot_prob = cfg.get("few_shot_prob", 0.0)
qformer_text_input = cfg.get("qformer_text_input", True)
repeat_to_init_qt_candidates= cfg.get("repeat_to_init_qt_candidates", True)
num_qt_candidates = cfg.get("num_qt_candidates", 5)
moe_topk = cfg.get("moe_topk", 2)
moe_position = cfg.get("moe_position", "pre")
embed_extract = cfg.get("embed_extract", "t5")
train_gate_save = cfg.get("train_gate_save", False)
eval_gate_save = cfg.get("eval_gate_save", False)
gate_save_path = cfg.get("gate_save_path", "")
model = cls(
vit_model=vit_model,
img_size=img_size,
q_former_model=q_former_model,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
freeze_llm=freeze_llm,
freeze_qformer=freeze_qformer,
freeze_t5_proj=freeze_t5_proj,
num_query_token=num_query_token,
t5_model=t5_model,
prompt=prompt,
max_txt_len=max_txt_len,
max_output_txt_len=max_output_txt_len,
apply_lemmatizer=apply_lemmatizer,
num_few_shot_examples=num_few_shot_examples,
few_shot_prob=few_shot_prob,
qformer_text_input=qformer_text_input,
repeat_to_init_qt_candidates=repeat_to_init_qt_candidates,
num_qt_candidates=num_qt_candidates,
moe_topk=moe_topk,
moe_position=moe_position,
embed_extract=embed_extract,
eval_gate_save=eval_gate_save,
train_gate_save=train_gate_save,
gate_save_path=gate_save_path,
)
# if qformer_text_input:
# # Hard-coded to load from BLIP-2 stage-1 pre-trained model (not ideal)
# model.load_from_pretrained(
# url_or_filename="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained.pth"
# )
model.load_checkpoint_from_config(cfg)
# check update params
print("Updating following parameters:")
for name, param in model.named_parameters():
if param.requires_grad == True:
print(name)
return model