MiniGPT-4/minigpt4/models/blip2_t5_qformer_moe.py
2024-03-28 14:48:42 +08:00

555 lines
21 KiB
Python

"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import string
import random
import copy
import json
import os
import numpy as np
import re
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import autocast as autocast
from transformers import T5TokenizerFast
from minigpt4.common.registry import registry
from minigpt4.models.blip2 import Blip2Base, disabled_train
from minigpt4.models.modeling_t5 import T5Config, T5ForConditionalGeneration
from transformers.modeling_outputs import BaseModelOutput
@registry.register_model("blip2_t5_qformer_moe_test")
class Blip2T5InstructQformerMoETest(Blip2Base):
"""
BLIP2 Instruct T5 model Qformer MoE
Supported model types:
- flant5xxl
Usage:
>>> from minigpt4.models import load_model
>>> import torch
>>> device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
>>> model = load_model("blip2_t5_qformer_moe_test", "flant5xxl", device=device)
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"flant5xxl": "configs/models/blip2/blip2_instruct_flant5xxl_qformer_moe.yaml",
}
def __init__(
self,
vit_model="eva_clip_g",
q_former_model="/mnt/pfs-guan-ssai/nlu/wanghanzi/models/blip2/blip2-flant5-xxl/blip2_pretrained_flant5xxl.pth",
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
freeze_llm=True,
freeze_qformer=False,
freeze_t5_proj=False,
num_query_token=32,
t5_model="google/flan-t5-xl",
prompt="",
max_txt_len=128,
max_output_txt_len=256,
apply_lemmatizer=False,
qformer_text_input=True,
moebert_expert_num=5,
moebert_route_method="gate-sentence",
moebert_load_balance = 0.1,
moe_topk = 1,
use_balance_loss=True,
):
"""
apply_lemmatizer: when set to True, postprocess predict_answers() result with lemmas.
"""
super().__init__()
self.tokenizer = self.init_tokenizer(truncation_side="left")
print("Init BLIP2 Instruct Flant5xxl Prompt MoE")
print('Initing & Loading VIT')
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
)
# freeze vit
if freeze_vit:
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
# freeze ln vision
for name, param in self.ln_vision.named_parameters():
param.requires_grad = False
self.ln_vision = self.ln_vision.eval()
self.ln_vision.train = disabled_train
logging.info("freeze vision encoder")
print('Loading VIT Done')
print('Initing MoE Q-Former')
self.Qformer, self.query_tokens = self.init_QformerMoE(
num_query_token=num_query_token,
vision_width=self.visual_encoder.num_features,
moebert_expert_num=moebert_expert_num,
moebert_route_method=moebert_route_method,
moebert_load_balance=moebert_load_balance,
moe_topk=moe_topk,
use_balance_loss=use_balance_loss,
cross_attention_freq=2
)
if not qformer_text_input:
self.Qformer.bert.embeddings.word_embeddings = None
self.Qformer.bert.embeddings.position_embeddings = None
for layer in self.Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
else:
self.Qformer.resize_token_embeddings(len(self.tokenizer))
self.Qformer.cls = None
print('Loading T5')
self.t5_tokenizer = T5TokenizerFast.from_pretrained(t5_model, truncation_side='left')
self.t5_output_tokenizer = T5TokenizerFast.from_pretrained(t5_model, truncation_side='right')
t5_config = T5Config.from_pretrained(t5_model)
t5_config.dense_act_fn = "gelu"
self.t5_model = T5ForConditionalGeneration.from_pretrained(
t5_model, config=t5_config, use_safetensors=False
)
# freeze t5 llm
if freeze_llm:
for name, param in self.t5_model.named_parameters():
param.requires_grad = False
param.data = param.data.bfloat16()
print('Loading T5 Done')
print("Initing t5 linear projection")
self.t5_proj = nn.Linear(
self.Qformer.config.hidden_size, self.t5_model.config.hidden_size
)
# load BLIP2 Pretrain
print("Loading BLIP2 Parameters from :", q_former_model)
self.load_from_pretrained(url_or_filename=q_former_model)
# init MoE Layer(init moe ffn by blip2 query ffn)
state_dict = self.Qformer.state_dict()
for name, param in self.Qformer.named_parameters():
if "_query" in name and "experts.experts" in name:
pattern = r'\.experts\.experts\.\d+'
key_orig = re.sub(pattern, '', name)
param.data.copy_(state_dict[key_orig]) # copy state_dict[key_orig] to param
if "experts.intermediate_query" in name or "experts.output_query" in name:
key_orig = re.sub(r'experts\.', '', name)
param.data.copy_(state_dict[key_orig]) # copy state_dict[key_orig] to param
if "_query" in name and "experts" not in name: # raw ffn_query not update
param.requires_grad = False
# freeze qformer
if freeze_qformer:
for name, param in self.Qformer.named_parameters():
param.requires_grad = False
self.Qformer = self.Qformer.eval()
self.Qformer.train = disabled_train
logging.info("freeze Qformer")
# After loading, freeze t5_proj
if freeze_t5_proj:
for name, param in self.t5_proj.named_parameters():
param.requires_grad = False
self.t5_proj = self.t5_proj.eval()
self.t5_proj.train = disabled_train
self.max_txt_len = max_txt_len
self.max_output_txt_len = max_output_txt_len
self.prompt = prompt
self._apply_lemmatizer = apply_lemmatizer
self._lemmatizer = None
self.qformer_text_input = qformer_text_input
self.moebert_load_balance = moebert_load_balance
def forward(self, samples):
# print('-----------------')
# print(samples["text_input"])
# print(samples.keys())
# print(samples)
# print(samples["text_output"])
# print('-----------------')
# import torch
# samples = {
# 'text_input':["What is around the open window?", # n23181
# "Is the ground blue or brown?", # n168412
# "What color are the pants?", # n446242
# "What is the airplane flying above?"], # n414992
# 'llm_input':["What is around the open window?", # n23181
# "Is the ground blue or brown?", # n168412
# "What color are the pants?", # n446242
# "What is the airplane flying above?"], # n414992
# 'text_output':["drapes",
# "brown",
# "red",
# "ocean"
# ],
# 'image': torch.randn(4, 3, 224, 224).half().to(device)
# }
# model(samples)
# samples = {
# 'text_input':["What is around the open window?"], # n414992
# 'llm_input':["What is around the open window?"], # n414992
# 'text_output':["drapes"],
# 'image': torch.randn(1, 3, 224, 224).to("cpu")
# }
image = samples["image"]
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
bz = image_embeds.shape[0]
query_tokens = self.query_tokens.expand(bz, -1, -1)
## Q-former Forward with one query tokens
if self.qformer_text_input:
text_Qformer = self.tokenizer(
samples["q_input"],
padding='longest',
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
Qformer_atts = torch.cat([query_atts,text_Qformer.attention_mask],dim=1)
query_output = self.Qformer.bert(
text_Qformer.input_ids,
attention_mask=Qformer_atts,
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
else:
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
query_output_to_linear = query_output.last_hidden_state[:,:query_tokens.size(1),:]
gate_loss = query_output.gate_loss
inputs_t5 = self.t5_proj(query_output_to_linear)
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
with self.maybe_autocast(dtype=torch.bfloat16):
input_tokens = self.t5_tokenizer(
samples["llm_input"],
padding="longest",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
output_tokens = self.t5_output_tokenizer(
samples["text_output"],
padding="longest",
truncation=True,
max_length=self.max_output_txt_len,
return_tensors="pt",
).to(image.device)
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
targets = output_tokens.input_ids.masked_fill(
output_tokens.input_ids == self.t5_tokenizer.pad_token_id, -100
)
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
outputs = self.t5_model(
inputs_embeds=inputs_embeds,
attention_mask=encoder_atts,
decoder_attention_mask=output_tokens.attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
final_loss = loss + self.moebert_load_balance * gate_loss
return {"loss": final_loss}
@torch.no_grad()
def generate(
self,
samples,
use_nucleus_sampling=False,
num_beams=5,
max_length=256,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1.0,
num_captions=1,
temperature=1,
):
if "prompt" in samples.keys():
prompt = samples["prompt"]
else:
prompt = self.prompt
image = samples["image"]
bs = image.size(0)
if isinstance(prompt, str):
prompt = [prompt] * bs
else:
assert len(prompt) == bs, "The number of prompts must be equal to the batch size."
# For TextCaps
if "ocr_tokens" in samples.keys() and "{}" in prompt[0]:
prompt = [p.format(', '.join(samples['ocr_tokens'][i][:30])) for i, p in enumerate(prompt)]
# image embed
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
query_tokens = self.query_tokens.expand(bs, -1, -1)
if self.qformer_text_input:
# remove ocr tokens in q_former (for eval textvqa)
# qformer_prompt = prompt
# qformer_prompt = ['Question: ' + qp.split(' Question: ')[1] for qp in qformer_prompt]
text_Qformer = self.tokenizer(
samples["q_input"],
padding='longest',
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
Qformer_atts = torch.cat([query_atts,text_Qformer.attention_mask],dim=1)
query_output = self.Qformer.bert(
text_Qformer.input_ids,
attention_mask=Qformer_atts,
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
else:
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
query_output_to_linear = query_output.last_hidden_state[:,:query_tokens.size(1),:]
inputs_t5 = self.t5_proj(query_output_to_linear)
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
input_tokens = self.t5_tokenizer(
prompt,
padding="longest",
return_tensors="pt"
).to(image.device)
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
with self.maybe_autocast(dtype=torch.bfloat16):
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
outputs = self.t5_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=encoder_atts,
do_sample=use_nucleus_sampling,
top_p=top_p,
temperature=temperature,
num_beams=num_beams,
max_new_tokens=max_length,
min_length=min_length,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
num_return_sequences=num_captions,
)
output_text = self.t5_tokenizer.batch_decode(
outputs, skip_special_tokens=True
)
return output_text
def predict_answers(
self,
samples,
num_beams=5,
inference_method="generate",
max_len=10,
min_len=1,
num_ans_candidates=128,
answer_list=None,
prompt="",
length_penalty=-1,
**kwargs
):
if isinstance(samples["llm_input"], str):
samples["llm_input"] = [samples["llm_input"]]
if prompt:
if prompt.count("{}") == 2:
if 'ocr_tokens' in samples:
text_input = [
prompt.format(', '.join(samples['ocr_tokens'][i][:30]), samples["llm_input"][i])
for i in range(len(samples["llm_input"]))]
elif 'choices' in samples:
text_input = []
for i in range(len(samples["llm_input"])):
this_choices = [f"({string.ascii_lowercase[j]}) {ch}" for j, ch in enumerate(samples["choices"][i])]
this_choices = " ".join(this_choices)
text_input.append(prompt.format(samples["llm_input"][i], this_choices))
else:
text_input = [prompt.format(question) for question in samples["llm_input"]]
else:
text_input = samples["llm_input"]
samples["prompt"] = text_input
output_text = self.generate(
samples,
num_beams=num_beams,
max_length=max_len,
min_length=min_len,
length_penalty=length_penalty
)
if self._apply_lemmatizer or ("apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]):
output_text = self._lemmatize(output_text)
return output_text
def _lemmatize(self, answers):
def apply(answer):
doc = self.lemmatizer(answer)
words = []
for token in doc:
if token.pos_ in ["NOUN", "VERB"]:
words.append(token.lemma_)
else:
words.append(token.text)
answer = " ".join(words)
return answer
return [apply(answer) for answer in answers]
@property
def lemmatizer(self):
if self._lemmatizer is None:
try:
import spacy
self._lemmatizer = spacy.load("en_core_web_sm")
except ImportError:
logging.error(
"""
Please install spacy and en_core_web_sm model to apply lemmatization.
python -m spacy download en_core_web_sm
OR
import spacy.cli
spacy.cli.download("en_core_web_sm")
"""
)
exit(1)
return self._lemmatizer
@classmethod
def from_config(cls, cfg):
vit_model = cfg.get("vit_model", "eva_clip_g")
q_former_model = cfg.get("q_former_model", "/mnt/pfs-guan-ssai/nlu/wanghanzi/models/blip2/blip2-flant5-xxl/blip2_pretrained_flant5xxl.pth")
img_size = cfg.get("image_size")
num_query_token = cfg.get("num_query_token")
t5_model = cfg.get("t5_model")
drop_path_rate = cfg.get("drop_path_rate", 0)
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
vit_precision = cfg.get("vit_precision", "fp16")
freeze_vit = cfg.get("freeze_vit", True)
freeze_llm = cfg.get("freeze_llm", True)
freeze_qformer = cfg.get("freeze_qformer", False)
freeze_t5_proj = cfg.get("freeze_t5_proj", False)
prompt = cfg.get("prompt", "")
max_txt_len = cfg.get("max_txt_len", 128)
max_output_txt_len = cfg.get("max_output_txt_len", 256)
apply_lemmatizer = cfg.get("apply_lemmatizer", False)
qformer_text_input = cfg.get("qformer_text_input", True)
moebert_expert_num = cfg.get("moebert_expert_num", 5)
moebert_route_method = cfg.get("moebert_route_method", "gate-sentence")
moebert_load_balance = cfg.get("moebert_load_balance", 0.1)
moe_topk = cfg.get("moe_topk", 1)
use_balance_loss = cfg.get("use_balance_loss", True)
model = cls(
vit_model=vit_model,
img_size=img_size,
q_former_model=q_former_model,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
freeze_llm=freeze_llm,
freeze_qformer=freeze_qformer,
freeze_t5_proj=freeze_t5_proj,
num_query_token=num_query_token,
t5_model=t5_model,
prompt=prompt,
max_txt_len=max_txt_len,
max_output_txt_len=max_output_txt_len,
apply_lemmatizer=apply_lemmatizer,
qformer_text_input=qformer_text_input,
moebert_expert_num=moebert_expert_num,
moebert_route_method=moebert_route_method,
moebert_load_balance=moebert_load_balance,
moe_topk=moe_topk,
use_balance_loss=use_balance_loss,
)
# if qformer_text_input:
# # Hard-coded to load from BLIP-2 stage-1 pre-trained model (not ideal)
# model.load_from_pretrained(
# url_or_filename="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained.pth"
# )
model.load_checkpoint_from_config(cfg)
# check update params
print("Updating following parameters:")
for name, param in model.named_parameters():
if param.requires_grad == True:
print(name)
# layer self attention: 2,363,904
# layer pure ffn : 4,723,968
# layer expert ffn : 4,723,968
# layer cross attention: 3,346,944
return model