mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-04 18:10:47 +00:00
290 lines
12 KiB
Python
290 lines
12 KiB
Python
import os
|
|
import re
|
|
import json
|
|
import argparse
|
|
from collections import defaultdict
|
|
|
|
import numpy as np
|
|
from PIL import Image
|
|
from tqdm import tqdm
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
from datasets import load_dataset
|
|
|
|
|
|
from minigpt4.datasets.datasets.vqa_datasets import OKVQAEvalData,VizWizEvalData,IconQAEvalData,GQAEvalData,VSREvalData,HMEvalData
|
|
|
|
from minigpt4.common.vqa_tools.VQA.PythonHelperTools.vqaTools.vqa import VQA
|
|
from minigpt4.common.vqa_tools.VQA.PythonEvaluationTools.vqaEvaluation.vqaEval import VQAEval
|
|
|
|
from minigpt4.common.eval_utils import prepare_texts, init_model, eval_parser
|
|
from minigpt4.conversation.conversation import CONV_VISION_minigptv2
|
|
import random
|
|
|
|
|
|
def list_of_str(arg):
|
|
return list(map(str, arg.split(',')))
|
|
|
|
|
|
parser = eval_parser()
|
|
parser.add_argument("--dataset", type=list_of_str, default='refcoco', help="dataset to evaluate")
|
|
parser.add_argument("--split", type=list_of_str, default='testB', help="dataset split to evaluate")
|
|
parser.add_argument("--resample", action='store_true', help="resolution used in refcoco")
|
|
parser.add_argument("--img_path", type=str)
|
|
parser.add_argument("--eval_file_path", type=str)
|
|
args = parser.parse_args()
|
|
|
|
print(args.ckpt)
|
|
print(args.name)
|
|
|
|
model, vis_processor = init_model(args)
|
|
conv_temp = CONV_VISION_LLama2.copy()
|
|
conv_temp.system = ""
|
|
|
|
model.eval()
|
|
|
|
os.makedirs('results', exist_ok=True)
|
|
|
|
if 'okvqa' in args.dataset:
|
|
img_path=os.path.join(args.img_path,"train")
|
|
with open(os.path.join(args.eval_file_path,"ok_vqa/test_split.json")) as f:
|
|
ok_vqa_test_split = json.load(f)
|
|
|
|
data = OKVQAEvalData(ok_vqa_test_split, vis_processor, img_path)
|
|
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
|
minigpt4_predict = []
|
|
|
|
resamples = []
|
|
|
|
for images, questions, question_ids, img_ids in eval_dataloader:
|
|
texts = prepare_texts(questions, conv_temp) # warp the texts with conversation template
|
|
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False)
|
|
|
|
for answer, question_id, question, img_id in zip(answers, question_ids, questions, img_ids):
|
|
result = dict()
|
|
if "<unk>" in answer.lower():
|
|
print("answer: ", answer)
|
|
answer = answer.lower().replace('<unk>','').strip()
|
|
result['answer'] = answer
|
|
result['question_id'] = int(question_id)
|
|
if answer == "":
|
|
resamples.append({'image_id': img_id, 'question_id':question_id, 'question': [question.replace('[vqa] Based on the image, respond to this question with a short answer:','').strip()]})
|
|
else:
|
|
minigpt4_predict.append(result)
|
|
|
|
if args.resample:
|
|
for i in range(20):
|
|
data = OKVQAEvalData(resamples, vis_processor, img_path)
|
|
resamples = []
|
|
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
|
for images, questions, question_ids, img_ids in eval_dataloader:
|
|
texts = prepare_texts(questions, conv_temp) # warp the texts with conversation template
|
|
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False)
|
|
for answer, question_id, question in zip(answers, question_ids, questions):
|
|
result = dict()
|
|
answer = answer.lower().replace('<unk>','').strip()
|
|
result['answer'] = answer
|
|
result['question_id'] = int(question_id)
|
|
minigpt4_predict.append(result)
|
|
if answer == "":
|
|
resamples.append({'image_id': img_id, 'question_id':question_id, 'question': [question.replace('[vqa] Based on the image, respond to this question with a short answer:','').strip()]})
|
|
else:
|
|
minigpt4_predict.append(result)
|
|
if len(resamples) == 0:
|
|
break
|
|
|
|
save_path=f'results/{args.name}_okvqa.json'
|
|
with open(save_path,'w') as f:
|
|
json.dump(minigpt4_predict, f)
|
|
|
|
annFile =f'{args.eval_file_path}/ok_vqa/mscoco_val2014_annotations_clean.json'
|
|
quesFile =f'{args.eval_file_path}/ok_vqa/OpenEnded_mscoco_val2014_questions_clean.json'
|
|
|
|
vqa = VQA(annFile, quesFile)
|
|
vqaRes = vqa.loadRes(save_path, quesFile)
|
|
|
|
vqaEval = VQAEval(vqa, vqaRes, n=2)
|
|
|
|
vqaEval.evaluate()
|
|
|
|
print ("Overall OKVQA Accuracy is: %.02f\n" %(vqaEval.accuracy['overall']), flush=True)
|
|
|
|
if 'vizwiz' in args.dataset:
|
|
img_path=f'{args.img_path}/vizwiz/val'
|
|
vizwiz = json.load(open(f'{args.eval_file_path}/vizwiz/val.json', 'r'))
|
|
|
|
data = VizWizEvalData(vizwiz, vis_processor, img_path)
|
|
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
|
minigpt4_predict = []
|
|
total_acc = []
|
|
for images, texts, gt_answers in tqdm(eval_dataloader):
|
|
texts = prepare_texts(texts, conv_temp) # warp the texts with conversation template
|
|
with torch.no_grad():
|
|
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False)
|
|
|
|
for answer, gt_answer in zip(answers, gt_answers):
|
|
result = dict()
|
|
result['answer'] = answer.replace('<unk>','').strip()
|
|
minigpt4_predict.append(result)
|
|
count=0
|
|
gt_answer = gt_answer.split('_')
|
|
for gt in gt_answer:
|
|
if gt.lower() == answer.lower():
|
|
count += 1
|
|
acc = min(count/3.0, 1.0)
|
|
total_acc.append(acc)
|
|
|
|
save_path=f'results/{args.name}_vizwiz.json'
|
|
with open(save_path,'w') as f:
|
|
json.dump(minigpt4_predict, f)
|
|
|
|
print('vizwiz Acc: ', np.average(total_acc)* 100.0, flush=True)
|
|
|
|
if 'aokvqa' in args.dataset:
|
|
img_path=f'{args.img_path}/aokvqa/images'
|
|
|
|
for split in args.split:
|
|
with open(f'{args.eval_file_path}/aokvqa/annotations/aokvqa_v1p0_{split}.json','r') as f:
|
|
aokvqa_v1p0 = json.load(f)
|
|
|
|
data = AOKVQADAEvalData(aokvqa_v1p0, vis_processor, img_path)
|
|
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
|
|
|
minigpt4_predict = defaultdict(dict)
|
|
|
|
for images, texts, question_ids in tqdm(eval_dataloader):
|
|
texts = prepare_texts(texts, conv_temp) # warp the texts with conversation template
|
|
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False)
|
|
|
|
for answer, question_id in zip(answers, question_ids):
|
|
minigpt4_predict[question_id]['direct_answer'] = answer.lower().replace('<unk>','').strip()
|
|
|
|
data = AOKVQAMCEvalData(aokvqa_v1p0, vis_processor, img_path)
|
|
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
|
|
|
for images, texts, question_ids, answers in tqdm(eval_dataloader):
|
|
instructions = ["[INST] <Img><ImageHere></Img> {} [/INST]".format(text) for text in texts]
|
|
answer_ranks = model.multi_select(images, instructions, answers)
|
|
candidates = [list(x) for x in zip(*answers)]
|
|
for idx, question_id in enumerate(question_ids):
|
|
minigpt4_predict[question_id]['multiple_choice'] = candidates[idx][answer_ranks[idx][0]]
|
|
|
|
save_path=f'results/{args.name}_a_okvqa_{split}.json'
|
|
with open(save_path,'w') as f:
|
|
json.dump(minigpt4_predict, f)
|
|
|
|
os.chdir('minigpt4/common/vqa_tools/aokvqa')
|
|
print(os.system(f'python evaluation/eval_predictions.py --aokvqa-dir {args.eval_file_path}/aokvqa/annotations --split {split} --preds ../../../../{save_path}'), flush=True)
|
|
os.chdir('../../../../')
|
|
|
|
if 'iconqa' in args.dataset:
|
|
iconqa_text_val = json.load(open(f'{eval_file_path}/iconqa/choose_text_val.json','r'))
|
|
img_path = f'{args.img_path}/iconqa/val/choose_txt'
|
|
data = IconQAEvalData(iconqa_text_val, vis_processor, img_path)
|
|
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
|
|
|
count = 0
|
|
for images, texts, candidates, answers in tqdm(eval_dataloader):
|
|
candidates = [candidate.split('_') for candidate in candidates]
|
|
num_cand = [len(candidate) for candidate in candidates]
|
|
for candidate in candidates:
|
|
candidate.extend(['none'] * (max(num_cand) - len(candidate)))
|
|
candidates = [list(x) for x in zip(*candidates)]
|
|
instructions = ["[INST] <Img><ImageHere></Img> {} [/INST]".format(text) for text in texts]
|
|
answer_ranks = model.multi_select(images, instructions, candidates, num_cand=num_cand)
|
|
for idx, answer in enumerate(answers):
|
|
if answer_ranks[idx][0] == answer:
|
|
count += 1
|
|
|
|
print('iconqa Acc: ', count / len(iconqa_text_val) * 100.0, flush=True)
|
|
|
|
|
|
if 'gqa' in args.dataset:
|
|
img_path = f'{args.img_path}/gqa/images/val'
|
|
gqa = json.load(open(f'{args.eval_file_path}/gqa/annotations/testdev_balanced_questions.json', 'r'))
|
|
data = GQAEvalData(gqa, vis_processor, img_path)
|
|
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
|
count=0
|
|
total=0
|
|
minigpt4_predict = []
|
|
for images, texts, labels in tqdm(eval_dataloader):
|
|
texts = prepare_texts(texts, conv_temp) # warp the texts with conversation template
|
|
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False)
|
|
|
|
for answer, label in zip(answers, labels):
|
|
result = dict()
|
|
result['pred'] = answer.lower().replace('<unk>','').strip()
|
|
result['gt'] = label
|
|
minigpt4_predict.append(result)
|
|
if answer.lower() == label:
|
|
count+=1
|
|
total+=1
|
|
print('gqa val:', count / total * 100, flush=True)
|
|
|
|
save_path=f'results/{args.name}_gqa.json'
|
|
with open(save_path,'w') as f:
|
|
json.dump(minigpt4_predict, f)
|
|
|
|
if 'vsr' in args.dataset:
|
|
annotation = load_dataset("cambridgeltl/vsr_zeroshot", split='test')
|
|
img_path = f'{args.img_path}/vsr/images'
|
|
data = VSREvalData(annotation, vis_processor, img_path)
|
|
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
|
count=0
|
|
total=0
|
|
|
|
minigpt4_predict = []
|
|
|
|
for images, texts, labels in tqdm(eval_dataloader):
|
|
texts = prepare_texts(texts, conv_temp) # warp the texts with conversation template
|
|
# print("texts",texts)
|
|
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False)
|
|
|
|
for answer, label in zip(answers, labels):
|
|
print(answer)
|
|
result = dict()
|
|
result['pred'] = answer.replace('<unk>','').strip()
|
|
result['gt'] = label
|
|
minigpt4_predict.append(result)
|
|
if answer.lower() == label.lower():
|
|
count+=1
|
|
total+=1
|
|
print('vsr test:', count / total * 100, flush=True)
|
|
save_path=f'results/{args.name}_vsr.json'
|
|
with open(save_path,'w') as f:
|
|
json.dump(minigpt4_predict, f)
|
|
|
|
if 'hm' in args.dataset:
|
|
img_path = f'{args.img_path}/hateful_meme'
|
|
annotation = []
|
|
with open(f'{args.eval_file_path}/hateful_meme/dev.jsonl', 'r') as jsonl_file:
|
|
for line in jsonl_file:
|
|
json_obj = json.loads(line)
|
|
annotation.append(json_obj)
|
|
|
|
data = HMEvalData(annotation, vis_processor, img_path)
|
|
eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False)
|
|
count=0
|
|
total=0
|
|
|
|
minigpt4_predict = []
|
|
|
|
for images, texts, labels in tqdm(eval_dataloader):
|
|
texts = prepare_texts(texts, conv_temp) # warp the texts with conversation template
|
|
answers = model.generate(images, texts, max_new_tokens=args.max_new_tokens, do_sample=False)
|
|
|
|
for answer, label in zip(answers, labels):
|
|
result = dict()
|
|
answer = 1 if answer.lower().__contains__('yes') else 0
|
|
result['pred'] = int(str(answer).replace('<unk>','').strip())
|
|
result['gt'] = int(label)
|
|
minigpt4_predict.append(result)
|
|
if answer == label:
|
|
count+=1
|
|
total+=1
|
|
print('hm val:', count / total * 100, flush=True)
|
|
|
|
save_path=f'results/{args.name}_hm.json'
|
|
with open(save_path,'w') as f:
|
|
json.dump(minigpt4_predict, f)
|