MiniGPT-4/eval_scripts/conversation.py
Bingyi Kang 3efda2ac76
Evaluation (#3)
Evaluation (Version 1) (including Quantitative & Qualitative)
WIP: Reconstruct the eval part & config part

---------

Co-authored-by: unknown <913556700@qq.com>
Co-authored-by: bingyikang <bingyikang@bytedance.com>
2023-05-25 12:34:00 +08:00

171 lines
6.6 KiB
Python

import dataclasses
from copy import deepcopy
from types import SimpleNamespace
from typing import List, Union, Dict
import torch
from PIL import Image
from torch import nn, Tensor
from transformers import StoppingCriteria, StoppingCriteriaList
from eval_scripts.eval_utils import load_image
from imagebind.models.image_bind import ModalityType
from minigpt4 import BaseProcessor
Roles = SimpleNamespace(
HUMAN="Human",
ASSISTANT="Assistant"
)
class Message:
def __init__(self, role: str, content: Union[str, None]):
self.role = role
self.content = content
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history."""
system: str
messages: List[Message]
sep: str = "###"
def get_prompt(self):
ret = self.system + self.sep
for message in self.messages:
if message.content:
ret += message.role + ": " + message.content + self.sep
else:
ret += message.role + ":"
return ret
def append_message(self, role, content):
self.messages.append(Message(role, content))
def copy(self):
return Conversation(
system=self.system,
messages=deepcopy(self.messages),
sep=self.sep)
def dict(self):
return {
"system": self.system,
"messages": [(msg.role, msg.content) for msg in self.messages],
"sep": self.sep
}
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
CONV_VISION = Conversation(
system="Give the following image: <Vision>ImageContent</Vision>. "
"You will be able to see the image once I provide it to you. Please answer my questions.",
messages=[],
sep="###",
)
# TODO: If needed and possible, rewrite this file and re-organize the definition of components.
class Chat:
def __init__(self,
model: nn.Module,
processors: Dict[str, BaseProcessor],
device: str = 'cuda:0'
):
self.device = device
self.model = model
self.processors = processors
stop_words_ids = [torch.tensor([835]).to(self.device),
torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways.
self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
self.just_uploaded = False
def ask(self, text, conversation):
# NOTE: the hard code for postfix is removed.
# end_token = '</Vision>'
# if len(conversation.messages) > 0 and conversation.messages[-1].role == Roles.HUMAN \
# and conversation.messages[-1].content[-len(end_token):] == end_token:
if self.just_uploaded:
conversation.messages[-1].content = ' '.join([conversation.messages[-1].content, text])
self.just_uploaded = False
else:
conversation.append_message(Roles.HUMAN, text)
def answer(self, conversation, emb_list, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.9,
repetition_penalty=1.0, length_penalty=1, temperature=1.0, max_length=2000):
# Generate an answer written by LLaMA
conversation.append_message(Roles.ASSISTANT, None)
embs = self.get_context_emb(conversation, emb_list)
current_max_len = embs.shape[1] + max_new_tokens
if current_max_len - max_length > 0:
print('Warning: The number of tokens in current conversation exceeds the max length. '
'The model will not see the contexts outside the range.')
begin_idx = max(0, current_max_len - max_length)
embs = embs[:, begin_idx:]
outputs = self.model.llama_model.generate(
inputs_embeds=embs,
max_new_tokens=max_new_tokens,
stopping_criteria=self.stopping_criteria,
num_beams=num_beams,
do_sample=True,
min_length=min_length,
top_p=top_p,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
temperature=temperature,
)
output_token = outputs[0]
if output_token[0] == 0: # the model might output a unknown token <unk> at the beginning. remove it
output_token = output_token[1:]
if output_token[0] == 1: # some users find that there is a start token <s> at the beginning. remove it
output_token = output_token[1:]
output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False)
output_text = output_text.split('###')[0] # remove the stop sign '###'
output_text = output_text.split('Assistant:')[-1].strip()
conversation.messages[-1].content = output_text
return output_text, output_token.cpu().numpy()
def upload_img(self, image: Union[str, Image.Image, Tensor], conversation: Conversation, emb_list: List[Tensor]):
# Upload Image, Encode Image and Create a new message from human.
image = load_image(image, self.processors[ModalityType.VISION]).to(self.device)
all_embeddings = self.model.encode_inputs({ModalityType.VISION: image})
image_emb = all_embeddings[ModalityType.VISION]
emb_list.append(image_emb)
conversation.append_message(Roles.HUMAN, "<Vision><ModalityHere></Vision>")
self.just_uploaded = True
def get_context_emb(self, conversation: Conversation, emb_list: List[Tensor]):
# Insert the embeddings into the prompts and queries.
# NOTE: Assume the placeholders have been aligned to the embeddings!
prompt = conversation.get_prompt()
prompt_segs = prompt.split('<ModalityHere>')
assert len(prompt_segs) == len(emb_list) + 1, "Unmatched numbers of placeholders and embeddings."
seg_tokens = [
self.model.llama_tokenizer(
seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids
# only add bos to the first seg
for i, seg in enumerate(prompt_segs)
]
seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens]
mixed_embs = [emb for pair in zip(seg_embs[:-1], emb_list) for emb in pair] + [seg_embs[-1]]
mixed_embs = torch.cat(mixed_embs, dim=1)
return mixed_embs