mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-05 02:20:47 +00:00
191 lines
6.3 KiB
Python
Executable File
191 lines
6.3 KiB
Python
Executable File
"""
|
|
Copyright (c) 2022, salesforce.com, inc.
|
|
All rights reserved.
|
|
SPDX-License-Identifier: BSD-3-Clause
|
|
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
"""
|
|
|
|
import os
|
|
import json
|
|
import random
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
from minigpt4.datasets.datasets.vqa_datasets import VQADataset, VQAEvalDataset
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
|
class __DisplMixin:
|
|
def displ_item(self, index):
|
|
sample, ann = self.__getitem__(index), self.annotation[index]
|
|
|
|
return OrderedDict(
|
|
{
|
|
"file": ann["image"],
|
|
"question": ann["question"],
|
|
"question_id": ann["question_id"],
|
|
"answers": "; ".join(ann["answer"]),
|
|
"image": sample["image"],
|
|
}
|
|
)
|
|
|
|
|
|
class COCOVQADataset(VQADataset, __DisplMixin):
|
|
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
|
|
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
|
|
|
|
self.instruction_pool =[
|
|
'{}',
|
|
'Q: {} A: ',
|
|
'Based on the image, respond to this question with a short answer: {}',
|
|
'{} A short answer to the question is ',
|
|
'Question: {} Short answer:',
|
|
]
|
|
exist_annotation = []
|
|
for ann in self.annotation:
|
|
# image_path = os.path.join(self.vis_root, ann["image"].split('/')[-1])
|
|
image_path = os.path.join(self.vis_root, ann["image"])
|
|
if os.path.exists(image_path):
|
|
exist_annotation.append(ann)
|
|
self.annotation = exist_annotation
|
|
self.source = 'vqav2'
|
|
|
|
|
|
def get_data(self, index):
|
|
ann = self.annotation[index]
|
|
|
|
# image_path = os.path.join(self.vis_root, ann["image"].split('/')[-1])
|
|
image_path = os.path.join(self.vis_root, ann["image"])
|
|
image = Image.open(image_path).convert("RGB")
|
|
|
|
image = self.vis_processor(image)
|
|
question = self.text_processor(ann["question"])
|
|
question_id = ann["question_id"]
|
|
|
|
answer_weight = {}
|
|
for answer in ann["answer"]:
|
|
if answer in answer_weight.keys():
|
|
answer_weight[answer] += 1 / len(ann["answer"])
|
|
else:
|
|
answer_weight[answer] = 1 / len(ann["answer"])
|
|
|
|
answers = list(answer_weight.keys())
|
|
weights = list(answer_weight.values())
|
|
|
|
answer = random.choices(answers, weights=weights, k=1)[0] # random sample an answer according to weights
|
|
|
|
return {
|
|
"image": image,
|
|
"image_id": ann["image"],
|
|
"question": question,
|
|
"question_id": question_id,
|
|
"answer": answer,
|
|
}
|
|
|
|
def __getitem__(self, index):
|
|
data = self.get_data(index)
|
|
question = data['question']
|
|
# instruction = random.choice(self.instruction_pool).format(question)
|
|
# instruction = "<Img><ImageHere></Img> {} ".format(instruction)
|
|
answer = self.text_processor(data['answer'])
|
|
q_input = question
|
|
llm_input = random.choice(self.instruction_pool).format(question)
|
|
|
|
return {
|
|
"image": data['image'],
|
|
"image_id": data["image_id"],
|
|
"question_id": data["question_id"],
|
|
"q_input": q_input,
|
|
# "q_input": llm_input,
|
|
"llm_input": llm_input,
|
|
"text_input": question,
|
|
"text_output": answer,
|
|
"answer": answer,
|
|
"source": 'vqav2',
|
|
}
|
|
|
|
|
|
class COCOVQAEvalDataset(VQAEvalDataset, __DisplMixin):
|
|
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
|
|
"""
|
|
vis_root (string): Root directory of images (e.g. coco/images/)
|
|
ann_root (string): directory to store the annotation file
|
|
"""
|
|
|
|
self.instruction_pool =[
|
|
'{}',
|
|
'Q: {} A: ',
|
|
'Based on the image, respond to this question with a short answer: {}',
|
|
'{} A short answer to the question is ',
|
|
'Question: {} Short answer:',
|
|
]
|
|
self.vis_root = vis_root
|
|
|
|
self.annotation = json.load(open(ann_paths[0]))
|
|
exist_annotation = []
|
|
for ann in self.annotation:
|
|
image_path = os.path.join(self.vis_root, ann["image"])
|
|
if os.path.exists(image_path):
|
|
exist_annotation.append(ann)
|
|
self.annotation = exist_annotation
|
|
|
|
answer_list_path = ann_paths[1]
|
|
if os.path.exists(answer_list_path):
|
|
self.answer_list = json.load(open(answer_list_path))
|
|
else:
|
|
self.answer_list = None
|
|
|
|
try:
|
|
self.coco_fmt_qust_file = ann_paths[2]
|
|
self.coco_fmt_anno_file = ann_paths[3]
|
|
except IndexError:
|
|
self.coco_fmt_qust_file = None
|
|
self.coco_fmt_anno_file = None
|
|
|
|
self.vis_processor = vis_processor
|
|
self.text_processor = text_processor
|
|
|
|
self.source = 'vqav2'
|
|
self.annotation_add = self.get_data()
|
|
self._add_instance_ids()
|
|
|
|
def get_data(self):
|
|
ann_instruct = list()
|
|
for i in range(len(self.annotation)):
|
|
ann = self.annotation[i].copy()
|
|
j = i % len(self.instruction_pool)
|
|
question = self.text_processor(ann["question"])
|
|
llm_input = self.instruction_pool[j].format(question)
|
|
ann['llm_input'] = llm_input
|
|
ann_instruct.append(ann)
|
|
np.random.seed(10)
|
|
np.random.shuffle(ann_instruct)
|
|
return ann_instruct
|
|
|
|
def __getitem__(self, index):
|
|
ann = self.annotation_add[index]
|
|
|
|
image_path = os.path.join(self.vis_root, ann["image"])
|
|
image = Image.open(image_path).convert("RGB")
|
|
image = self.vis_processor(image)
|
|
|
|
question = self.text_processor(ann["question"])
|
|
q_input = question
|
|
llm_input = ann.get("llm_input",random.choice(self.instruction_pool).format(question))
|
|
|
|
return {
|
|
"image": image,
|
|
"image_id": ann["image"],
|
|
'image_path': image_path,
|
|
"question_id": ann["question_id"],
|
|
# "instance_id": ann["instance_id"],
|
|
# "question": question,
|
|
# "q_input": llm_input,
|
|
"q_input": q_input,
|
|
"llm_input": llm_input,
|
|
"text_input": question,
|
|
# "answer": ann["answer"],
|
|
"source": 'vqav2',
|
|
}
|