mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-05 02:20:47 +00:00
159 lines
5.2 KiB
Python
Executable File
159 lines
5.2 KiB
Python
Executable File
"""
|
|
Copyright (c) 2022, salesforce.com, inc.
|
|
All rights reserved.
|
|
SPDX-License-Identifier: BSD-3-Clause
|
|
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
"""
|
|
|
|
import os
|
|
import json
|
|
|
|
from PIL import Image
|
|
|
|
from minigpt4.datasets.datasets.vqa_datasets import VQADataset, VQAEvalDataset
|
|
|
|
from collections import OrderedDict
|
|
import random
|
|
import numpy as np
|
|
|
|
class __DisplMixin:
|
|
def displ_item(self, index):
|
|
sample, ann = self.__getitem__(index), self.annotation[index]
|
|
|
|
return OrderedDict(
|
|
{
|
|
"file": ann["image"],
|
|
"question": ann["question"],
|
|
"question_id": ann["question_id"],
|
|
"answers": "; ".join(ann["answer"]),
|
|
"image": sample["image"],
|
|
}
|
|
)
|
|
|
|
|
|
class GQADataset(VQADataset, __DisplMixin):
|
|
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
|
|
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
|
|
# self.instruction_pool =[
|
|
# "[vqa] {}",
|
|
# "[vqa] Based on the image, respond to this question with a short answer: {}"
|
|
# ]
|
|
self.instruction_pool =[
|
|
'{}',
|
|
'Q: {} A: ',
|
|
'Based on the image, respond to this question with a short answer: {}',
|
|
# 'Question: {}',
|
|
# 'Answer the question: {}',
|
|
'{} A short answer to the question is ',
|
|
'Question: {} Short answer:',
|
|
# 'Question: {} Answer: ',
|
|
# 'Based on the image, respond to this question with a short answer: {}',
|
|
]
|
|
self.source = 'gqa'
|
|
|
|
|
|
def __getitem__(self, index):
|
|
ann = self.annotation[index]
|
|
|
|
image_path = os.path.join(self.vis_root, ann["image"])
|
|
image = Image.open(image_path).convert("RGB")
|
|
|
|
image = self.vis_processor(image)
|
|
question = self.text_processor(ann["question"])
|
|
|
|
# instruction = random.choice(self.instruction_pool).format(question)
|
|
# instruction = "<Img><ImageHere></Img> {} ".format(instruction)
|
|
|
|
answers = self.text_processor(ann["answer"])
|
|
q_input = question
|
|
llm_input = random.choice(self.instruction_pool).format(question)
|
|
|
|
return {
|
|
"image": image,
|
|
'image_id': ann["image"],
|
|
"text_input": question,
|
|
# "text_output": ann["fullAnswer"],
|
|
"text_output": answers,
|
|
# "instruction_input": instruction,
|
|
# "q_input": llm_input,
|
|
"q_input": q_input,
|
|
"llm_input": llm_input,
|
|
"gt_answers": answers,
|
|
"source": "gqa",
|
|
}
|
|
|
|
class GQAEvalDataset(VQAEvalDataset, __DisplMixin):
|
|
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
|
|
"""
|
|
vis_root (string): Root directory of images (e.g. gqa/images/)
|
|
ann_root (string): directory to store the annotation file
|
|
"""
|
|
|
|
self.vis_root = vis_root
|
|
|
|
self.annotation = json.load(open(ann_paths[0]))
|
|
|
|
## TODO: support inference method == 'ranking'
|
|
answer_list_path = ann_paths[1] if len(ann_paths) > 1 else ''
|
|
if os.path.exists(answer_list_path):
|
|
self.answer_list = json.load(open(answer_list_path))
|
|
else:
|
|
self.answer_list = None
|
|
|
|
self.vis_processor = vis_processor
|
|
self.text_processor = text_processor
|
|
|
|
self.instruction_pool =[
|
|
'{}',
|
|
'Q: {} A: ',
|
|
'Based on the image, respond to this question with a short answer: {}',
|
|
'{} A short answer to the question is ',
|
|
'Question: {} Short answer:',
|
|
]
|
|
|
|
self.annotation_add = self.get_data()
|
|
self.source = 'gqa'
|
|
self._add_instance_ids()
|
|
|
|
def get_data(self):
|
|
ann_instruct = list()
|
|
for i in range(len(self.annotation)):
|
|
ann = self.annotation[i].copy()
|
|
j = i % len(self.instruction_pool)
|
|
question = self.text_processor(ann["question"])
|
|
llm_input = self.instruction_pool[j].format(question)
|
|
ann['llm_input'] = llm_input
|
|
ann_instruct.append(ann)
|
|
np.random.seed(10)
|
|
np.random.shuffle(ann_instruct)
|
|
return ann_instruct
|
|
|
|
|
|
def __getitem__(self, index):
|
|
ann = self.annotation_add[index]
|
|
|
|
image_path = os.path.join(self.vis_root, ann["image"])
|
|
image = Image.open(image_path).convert("RGB")
|
|
|
|
image = self.vis_processor(image)
|
|
question = self.text_processor(ann["question"])
|
|
|
|
answer = ann.get("answer", "")
|
|
fullAnswer = ann.get("fullAnswer","")
|
|
llm_input = ann.get("llm_input",random.choice(self.instruction_pool).format(question))
|
|
q_input = question
|
|
|
|
return {
|
|
"image": image,
|
|
"image_id": ann["image"],
|
|
"text_input": question,
|
|
"gt_answers": answer,
|
|
"fullAnswer": fullAnswer,
|
|
"text_output": answer,
|
|
"q_input": q_input,
|
|
# "q_input": llm_input,
|
|
"llm_input": llm_input,
|
|
"question_id": ann["question_id"],
|
|
# "instance_id": ann["instance_id"],
|
|
"source": "gqa",
|
|
} |