MiniGPT-4/minigpt4/datasets/datasets/gqa_datasets.py
2024-04-01 12:15:47 +08:00

159 lines
5.2 KiB
Python
Executable File

"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import os
import json
from PIL import Image
from minigpt4.datasets.datasets.vqa_datasets import VQADataset, VQAEvalDataset
from collections import OrderedDict
import random
import numpy as np
class __DisplMixin:
def displ_item(self, index):
sample, ann = self.__getitem__(index), self.annotation[index]
return OrderedDict(
{
"file": ann["image"],
"question": ann["question"],
"question_id": ann["question_id"],
"answers": "; ".join(ann["answer"]),
"image": sample["image"],
}
)
class GQADataset(VQADataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
# self.instruction_pool =[
# "[vqa] {}",
# "[vqa] Based on the image, respond to this question with a short answer: {}"
# ]
self.instruction_pool =[
'{}',
'Q: {} A: ',
'Based on the image, respond to this question with a short answer: {}',
# 'Question: {}',
# 'Answer the question: {}',
'{} A short answer to the question is ',
'Question: {} Short answer:',
# 'Question: {} Answer: ',
# 'Based on the image, respond to this question with a short answer: {}',
]
self.source = 'gqa'
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
question = self.text_processor(ann["question"])
# instruction = random.choice(self.instruction_pool).format(question)
# instruction = "<Img><ImageHere></Img> {} ".format(instruction)
answers = self.text_processor(ann["answer"])
q_input = question
llm_input = random.choice(self.instruction_pool).format(question)
return {
"image": image,
'image_id': ann["image"],
"text_input": question,
# "text_output": ann["fullAnswer"],
"text_output": answers,
# "instruction_input": instruction,
# "q_input": llm_input,
"q_input": q_input,
"llm_input": llm_input,
"gt_answers": answers,
"source": "gqa",
}
class GQAEvalDataset(VQAEvalDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. gqa/images/)
ann_root (string): directory to store the annotation file
"""
self.vis_root = vis_root
self.annotation = json.load(open(ann_paths[0]))
## TODO: support inference method == 'ranking'
answer_list_path = ann_paths[1] if len(ann_paths) > 1 else ''
if os.path.exists(answer_list_path):
self.answer_list = json.load(open(answer_list_path))
else:
self.answer_list = None
self.vis_processor = vis_processor
self.text_processor = text_processor
self.instruction_pool =[
'{}',
'Q: {} A: ',
'Based on the image, respond to this question with a short answer: {}',
'{} A short answer to the question is ',
'Question: {} Short answer:',
]
self.annotation_add = self.get_data()
self.source = 'gqa'
self._add_instance_ids()
def get_data(self):
ann_instruct = list()
for i in range(len(self.annotation)):
ann = self.annotation[i].copy()
j = i % len(self.instruction_pool)
question = self.text_processor(ann["question"])
llm_input = self.instruction_pool[j].format(question)
ann['llm_input'] = llm_input
ann_instruct.append(ann)
np.random.seed(10)
np.random.shuffle(ann_instruct)
return ann_instruct
def __getitem__(self, index):
ann = self.annotation_add[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
question = self.text_processor(ann["question"])
answer = ann.get("answer", "")
fullAnswer = ann.get("fullAnswer","")
llm_input = ann.get("llm_input",random.choice(self.instruction_pool).format(question))
q_input = question
return {
"image": image,
"image_id": ann["image"],
"text_input": question,
"gt_answers": answer,
"fullAnswer": fullAnswer,
"text_output": answer,
"q_input": q_input,
# "q_input": llm_input,
"llm_input": llm_input,
"question_id": ann["question_id"],
# "instance_id": ann["instance_id"],
"source": "gqa",
}